Molecular Biology Reports

, Volume 41, Issue 7, pp 4389–4395 | Cite as

Immune-related chemotactic factors were found in acute coronary syndromes by bioinformatics

  • Lei Zhang
  • Jian Li
  • Aibin Liang
  • Yang Liu
  • Bing Deng
  • Hao Wang
Article

Abstract

DNA microarray data for thrombus-related leukocyte from patients with acute coronary syndrome (ACS) was analyzed to acquire key genes associated with ACS. Microarray data set GSE19339, including four ACS patients’ samples and four normal samples, were downloaded from Gene Expression Omnibus database. Raw data was pre-processed and differentially expressed genes (DEGs) were identified by Affy packages of R. The interaction network was established with STRING. DrugBank was retrieved to obtain relevant small molecules. A total of 487 differentially expressed genes were identified as DEGs between normal and disease samples. Among which, ten up-regulated genes belonging to chemokine family (CCL2, CCR1, CXCL3, CXCL2, CCL8, CXCL11, CCL7, IL10, CCL22 and CCL20) were related to inflammatory response. In addition, two inhibitors of CCL2 (L-Mimosine) were retrieved from the DrugBank database. Considering the roles of inflammatory response in the progression of ACS and the functions of the ten up-regulated genes, we speculated that these genes might be related to ACS. Moreover, the inhibitors could provide guidelines for future drug design acting on these genes.

Keywords

Acute coronary syndrome Differentially expressed gene Functional enrichment analysis Pathway analysis Small molecule drug 

Notes

Conflict of interest

None.

References

  1. 1.
    Smith SC, Jr, Dove JT, Jacobs AK, Kennedy JW, Kereiakes D, Kern MJ, Kuntz RE, Popma JJ, Schaff HV, Williams DO, Gibbons RJ, Alpert JP, Eagle KA, Faxon DP, Fuster V, Gardner TJ, Gregoratos G, Russell RO (2001) ACC/AHA guidelines of percutaneous coronary interventions (revision of the 1993 PTCA guidelines)–executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty). J Am Coll Cardiol 37(8):2215–2239CrossRefPubMedGoogle Scholar
  2. 2.
    Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94(8):2013–2020CrossRefPubMedGoogle Scholar
  3. 3.
    Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92(3):657–671CrossRefPubMedGoogle Scholar
  4. 4.
    Hamm CW, Braunwald E (2000) A classification of unstable angina revisited. Circulation 102(1):118–122CrossRefPubMedGoogle Scholar
  5. 5.
    Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O’Neill WW (2000) Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 343(13):915–922. doi: 10.1056/NEJM200009283431303 CrossRefPubMedGoogle Scholar
  6. 6.
    Januzzi JL Jr, Buros J, Cannon CP (2005) Peripheral arterial disease, acute coronary syndromes, and early invasive management: the TACTICS TIMI 18 trial. Clin Cardiol 28(5):238–242CrossRefPubMedGoogle Scholar
  7. 7.
    Zebrack JS, Anderson JL (2002) The role of inflammation and infection in the pathogenesis and evolution of coronary artery disease. Curr Cardiol Rep 4(4):278–288CrossRefPubMedGoogle Scholar
  8. 8.
    Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91(11):2844–2850CrossRefPubMedGoogle Scholar
  9. 9.
    Henney AM, Wakeley PR, Davies MJ, Foster K, Hembry R, Murphy G, Humphries S (1991) Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA 88(18):8154–8158PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94(6):2493–2503. doi: 10.1172/JCI117619 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Nikkari ST, O’Brien KD, Ferguson M, Hatsukami T, Welgus HG, Alpers CE, Clowes AW (1995) Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 92(6):1393–1398CrossRefPubMedGoogle Scholar
  12. 12.
    Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69(5):377–381PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89(1):36–44CrossRefPubMedGoogle Scholar
  14. 14.
    Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, Virmani R (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93(7):1354–1363CrossRefPubMedGoogle Scholar
  15. 15.
    Bevilacqua MP, Schleef RR, Gimbrone MA Jr, Loskutoff DJ (1986) Regulation of the fibrinolytic system of cultured human vascular endothelium by interleukin 1. J Clin Invest 78(2):587–591. doi: 10.1172/JCI112613 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Håkanson M, Kobel S, Lutolf MP, Textor M, Cukierman E, Charnley M (2012) Controlled breast cancer microarrays for the deconvolution of cellular multilayering and density effects upon drug responses. PLoS ONE 7(6):e40141PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discovery 5(3):219–234CrossRefPubMedGoogle Scholar
  18. 18.
    Chan T-M, Harn H-J, Chiou T-W, Lin S-Z (2013) Developing new small molecular drugs for prostate cancer therapy. J Cancer Ther 4:86–90CrossRefGoogle Scholar
  19. 19.
    Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17(6):520–525CrossRefPubMedGoogle Scholar
  20. 20.
    Fujita A, Sato JR, Rodrigues Lde O, Ferreira CE, Sogayar MC (2006) Evaluating different methods of microarray data normalization. BMC Bioinformatics 7:469. doi: 10.1186/1471-2105-7-469 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York, pp 397–420. doi: 10.1007/0-387-29362-0_23 CrossRefGoogle Scholar
  22. 22.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300. doi: 10.2307/2346101 Google Scholar
  23. 23.
    Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568. doi: 10.1093/nar/gkq973 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33(Web Server issue):W741–W748. doi: 10.1093/nar/gki475 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Duncan D, Prodduturi N, Zhang B (2010) WebGestalt2: an updated and expanded version of the Web-based Gene Set Analysis Toolkit. BMC Bioinformatics 11(Suppl 4):P10. doi: 10.1186/1471-2105-11-S4-P10 PubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hosack D, Dennis G, Sherman B, Lane C, Lempicki R (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4(10):R70. doi: 10.1186/gb-2003-4-10-r70 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672. doi: 10.1093/nar/gkj067 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue):D901–D906. doi: 10.1093/nar/gkm958 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Kubica J, Kozinski M, Krzewina-Kowalska A, Zbikowska-Gotz M, Dymek G, Sukiennik A, Piasecki R, Bogdan M, Grzesk G, Chojnicki M, Dziedziczko A, Sypniewska G (2005) Combined periprocedural evaluation of CRP and TNF-alpha enhances the prediction of clinical restenosis and major adverse cardiac events in patients undergoing percutaneous coronary interventions. Int J Mol Med 16(1):173–180PubMedGoogle Scholar
  30. 30.
    Meng F, Lowell CA (1997) Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med 185(9):1661–1670PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R (1994) Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med 20(3):225–232CrossRefPubMedGoogle Scholar
  32. 32.
    Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354(6):610–621. doi: 10.1056/NEJMra052723 CrossRefPubMedGoogle Scholar
  33. 33.
    Coll B, Alonso-Villaverde C, Joven J (2007) Monocyte chemoattractant protein-1 and atherosclerosis: is there room for an additional biomarker? Clin Chim Acta 383(1–2):21–29. doi: 10.1016/j.cca.2007.04.019 CrossRefPubMedGoogle Scholar
  34. 34.
    Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, Proudfoot A, Tedgui A, Mallat Z (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117(13):1649–1657. doi: 10.1161/CIRCULATIONAHA.107.745091 CrossRefPubMedGoogle Scholar
  35. 35.
    Paoletti S, Petkovic V, Sebastiani S, Danelon MG, Uguccioni M, Gerber BO (2005) A rich chemokine environment strongly enhances leukocyte migration and activities. Blood 105(9):3405–3412. doi: 10.1182/blood-2004-04-1648 CrossRefPubMedGoogle Scholar
  36. 36.
    Crown SE, Yu Y, Sweeney MD, Leary JA, Handel TM (2006) Heterodimerization of CCR2 chemokines and regulation by glycosaminoglycan binding. J Biol Chem 281(35):25438–25446. doi: 10.1074/jbc.M601518200 CrossRefPubMedGoogle Scholar
  37. 37.
    Braunersreuther V, Mach F, Steffens S (2007) The specific role of chemokines in atherosclerosis. Thromb Haemost 97(5):714–721PubMedGoogle Scholar
  38. 38.
    Ardigo D, Assimes TL, Fortmann SP, Go AS, Hlatky M, Hytopoulos E, Iribarren C, Tsao PS, Tabibiazar R, Quertermous T (2007) Circulating chemokines accurately identify individuals with clinically significant atherosclerotic heart disease. Physiol Genomics 31(3):402–409. doi: 10.1152/physiolgenomics.00104.2007 CrossRefPubMedGoogle Scholar
  39. 39.
    Kimura S, Tanimoto A, Wang KY, Shimajiri S, Guo X, Tasaki T, Yamada S, Sasaguri Y (2012) Expression of macrophage-derived chemokine (CCL22) in atherosclerosis and regulation by histamine via the H2 receptor. Pathol Int 62(10):675–683. doi: 10.1111/j.1440-1827.2012.02854.x CrossRefPubMedGoogle Scholar
  40. 40.
    Jabs A, Okamoto E, Vinten-Johansen J, Bauriedel G, Wilcox JN (2007) Sequential patterns of chemokine- and chemokine receptor-synthesis following vessel wall injury in porcine coronary arteries. Atherosclerosis 192(1):75–84. doi: 10.1016/j.atherosclerosis.2006.05.050 CrossRefPubMedGoogle Scholar
  41. 41.
    Tabas I (2010) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 107(7):839–850. doi: 10.1161/CIRCRESAHA.110.224766 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Castillo L, Rohatgi A, Ayers CR, Owens AW, Das SR, Khera A, McGuire DK, de Lemos JA (2010) Associations of four circulating chemokines with multiple atherosclerosis phenotypes in a large population-based sample: results from the dallas heart study. J Interferon Cytokine Res 30(5):339–347. doi: 10.1089/jir.2009.0045 PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Tabibiazar R, Wagner RA, Deng A, Tsao PS, Quertermous T (2006) Proteomic profiles of serum inflammatory markers accurately predict atherosclerosis in mice. Physiol Genomics 25(2):194–202. doi: 10.1152/physiolgenomics.00240.2005 CrossRefPubMedGoogle Scholar
  44. 44.
    Potteaux S, Combadiere C, Esposito B, Casanova S, Merval R, Ardouin P, Gao JL, Murphy PM, Tedgui A, Mallat Z (2005) Chemokine receptor CCR1 disruption in bone marrow cells enhances atherosclerotic lesion development and inflammation in mice. Mol Med 11(1–12):16–20. doi: 10.2119/2005-00028.Potteaux PubMedCentralPubMedGoogle Scholar
  45. 45.
    Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O (2010) Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122(18):1837–1845. doi: 10.1161/CIRCULATIONAHA.110.961714 CrossRefPubMedGoogle Scholar
  46. 46.
    Souza DG, Teixeira MM (2005) The balance between the production of tumor necrosis factor-alpha and interleukin-10 determines tissue injury and lethality during intestinal ischemia and reperfusion. Mem Inst Oswaldo Cruz 100(Suppl 1):59–66CrossRefPubMedGoogle Scholar
  47. 47.
    Frydas S, Papaioannou N, Papazahariadou M, Hatzistilianou M, Karagouni E, Trakatelli M, Brellou G, Petrarca C, Castellani ML, Conti P, Riccioni G, Patruno A, Grilli A (2005) Inhibition of MCP-1 and MIP-2 chemokines in murine trichinellosis: effect of the anti-inflammatory compound L-mimosine. Int J Immunopathol Pharmacol 18(1):85–94PubMedGoogle Scholar
  48. 48.
    Jolicoeur C, Lemay A, Akoum A (2001) Comparative effect of danazol and a GnRH agonist on monocyte chemotactic protein-1 expression by endometriotic cells. Am J Reprod Immunol 45(2):86–93CrossRefPubMedGoogle Scholar
  49. 49.
    Crook D, Sidhu M, Seed M, O’Donnell M, Stevenson JC (1992) Lipoprotein Lp(a) levels are reduced by danazol, an anabolic steroid. Atherosclerosis 92(1):41–47CrossRefPubMedGoogle Scholar
  50. 50.
    Krude T (1999) Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp Cell Res 247(1):148–159CrossRefPubMedGoogle Scholar
  51. 51.
    Crowe B, Poynter JA, Manukyan MC, Wang Y, Brewster BD, Herrmann JL, Abarbanell AM, Weil BR, Meldrum DR (2011) Pretreatment with intracoronary mimosine improves postischemic myocardial functional recovery. Surgery 150(2):191–196CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lei Zhang
    • 1
  • Jian Li
    • 2
  • Aibin Liang
    • 3
  • Yang Liu
    • 4
  • Bing Deng
    • 5
  • Hao Wang
    • 1
  1. 1.Department of Special Needs Medical Branch, Shanghai Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
  2. 2.Department of Geriatrics, Shanghai Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
  3. 3.Department of Hematology, Shanghai Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
  4. 4.Department of Cardiology, Shanghai Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
  5. 5.Longhua Hospital Affiliated to Shanghai Traditional Chinese Medicine UniversityShanghaiChina

Personalised recommendations