Molecular Biology Reports

, Volume 41, Issue 6, pp 3859–3866 | Cite as

Evolution of primate α and θ defensins revealed by analysis of genomes

  • Diyan Li
  • Long Zhang
  • Huadong Yin
  • Huailiang Xu
  • Jessica Satkoski Trask
  • David Glenn Smith
  • Ying Li
  • Mingyao YangEmail author
  • Qing ZhuEmail author


Defensins are endogenous peptides with cysteine-rich antimicrobial ability that contribute to host defence against bacterial, fungal and viral infections. There are three subfamilies of defensins in primates: α, β and θ-defensins. α-defensins are most present in neutrophils and Paneth cells; β-defensins are involved in protecting the skin and the mucous membranes of the respiratory, genitourinary and gastrointestinal tracts; and θ-defensins are physically distinguished as the only known fully-cyclic peptides of animal origin, which are first isolated from rhesus macaques. All three kinds of defensins have six conserved cysteines, three intramolecular disulfide bonds, a net positive charge, and β-sheet regions. α and θ-defensins are closely related, comparative amino acid sequences showed that the difference between them is that θ-defensins have an additional stop codon limits the initial defensin domain peptides to 12 residues. Humans, chimpanzees and gorillas do not produce θ-defensin peptides due to a premature stop codon present in the signal sequence of all θ-defensin pseudogenes. By using comprehensive computational searches, here we report the discovery of complete repertoires of the α and θ-defensin gene family in ten primate species. Consistent with previous studies, our phylogenetic analyses showed all primate θ-defensins evident formed one distinct clusters evolved from α-defensins. β-defensins are ancestors of both α and θ-defensins. Human has two copies of DEFA1 and DEFT1P, and two extra DEFA3 and DEFA10P genes compared with gorilla. As different primates inhabit in quite different ecological niches, the production of species-specific α and θ-defensins and these highly evolved θ-defensins in old world monkeys would presumably allow them to better respond to the specific microbial challenges that they face.


α Defensin θ Defensin Primates Genome evolution 



This work was supported by China Agriculture Research System (CARS-41), and the Program from Sichuan Province (2011NZ0099-7 and 2011NZ0073).

Supplementary material

11033_2014_3253_MOESM1_ESM.file (35 kb)
Supplementary material 1 (FILE 34 kb)
11033_2014_3253_MOESM2_ESM.file (13 kb)
Supplementary material 2 (FILE 12 kb)
11033_2014_3253_MOESM3_ESM.xls (28 kb)
Supplementary material 3 (XLS 27 kb)


  1. 1.
    Zou J, Mercier C, Koussounadis A, Secombes C (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44(4):638–647CrossRefPubMedGoogle Scholar
  2. 2.
    Hellgren O, Ekblom R (2010) Evolution of a cluster of innate immune genes (beta-defensins) along the ancestral lines of chicken and zebra finch. Immunome Res 6:3. doi: 10.1186/1745-7580-6-3 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Hughes A (1999) Evolutionary diversification of the mammalian defensins. Cell Mol Life Sci 56(1–2):94–103CrossRefPubMedGoogle Scholar
  4. 4.
    Aldred PM, Hollox EJ, Armour JA (2005) Copy number polymorphism and expression level variation of the human α-defensin genes DEFA1 and DEFA3. Hum Mol Genet 14(14):2045–2052CrossRefPubMedGoogle Scholar
  5. 5.
    Ganz T (1999) Defensins and host defense. Science 286(5439):420–421CrossRefPubMedGoogle Scholar
  6. 6.
    Tang Y-Q, Yuan J, Ösapay G, Ösapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286(5439):498–502CrossRefPubMedGoogle Scholar
  7. 7.
    Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720CrossRefPubMedGoogle Scholar
  8. 8.
    Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14(1):96–102CrossRefPubMedGoogle Scholar
  9. 9.
    Conibear AC, Rosengren KJ, Daly NL, Henriques ST, Craik DJ (2013) The cyclic cystine ladder in theta-defensins is important for structure and stability, but not antibacterial activity. J Biol Chem 288(15):10830–10840. doi: 10.1074/jbc.M113.451047 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides 24(11):1647–1654CrossRefPubMedGoogle Scholar
  11. 11.
    Liu L, Zhao C, Heng HH, Ganz T (1997) The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43(3):316–320. doi: 10.1006/geno.1997.4801 CrossRefPubMedGoogle Scholar
  12. 12.
    Patil A, Hughes AL, Zhang G (2004) Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes. Physiol Genomics 20(1):1–11. doi: 10.1152/physiolgenomics.00150.2004 CrossRefPubMedGoogle Scholar
  13. 13.
    Chen H, Xu Z, Peng L, Fang X, Yin X, Xu N, Cen P (2006) Recent advances in the research and development of human defensins. Peptides 27(4):931–940CrossRefPubMedGoogle Scholar
  14. 14.
    Klotman ME, Chang TL (2006) Defensins in innate antiviral immunity. Nat Rev Immunol 6(6):447–456CrossRefPubMedGoogle Scholar
  15. 15.
    Daher K, Selsted M, Lehrer R (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60(3):1068–1074PubMedCentralPubMedGoogle Scholar
  16. 16.
    Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3(6):583–590CrossRefPubMedGoogle Scholar
  17. 17.
    Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422(6931):522–526CrossRefPubMedGoogle Scholar
  18. 18.
    Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, Levy JA (2003) [alpha]-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17(14):F23–F32CrossRefPubMedGoogle Scholar
  19. 19.
    Chang TL, Vargas J, DelPortillo A, Klotman ME (2005) Dual role of α-defensin-1 in anti–HIV-1 innate immunity. J Clin Investig 115(3):765–773PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Yount NY, Wang M, Yuan J, Banaiee N, Ouellette AJ, Selsted ME (1995) Rat neutrophil defensins. Precursor structures and expression during neutrophilic myelopoiesis. J Immunol 155(9):4476–4484PubMedGoogle Scholar
  21. 21.
    Ferguson L, Browning B, Huebner C, Petermann I, Shelling A, Demmers P, McCulloch A, Gearry R, Barclay M, Philpott M (2008) Single nucleotide polymorphisms in human Paneth cell defensin A5 may confer susceptibility to inflammatory bowel disease in a New Zealand Caucasian population. Dig Liver Dis 40(9):723–730CrossRefPubMedGoogle Scholar
  22. 22.
    Aldred PM, Hollox EJ, Armour JA (2005) Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3. Hum Mol Genet 14(14):2045–2052. doi: 10.1093/hmg/ddi209 CrossRefPubMedGoogle Scholar
  23. 23.
    Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI (2002) Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci USA 99(4):1813–1818. doi: 10.1073/pnas.052706399 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) Retrocyclin, an antiretroviral theta-defensin, is a lectin. J Immunol 170(9):4708–4716CrossRefPubMedGoogle Scholar
  25. 25.
    Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME (2002) Homodimeric theta-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 277(5):3079–3084. doi: 10.1074/jbc.M109117200 CrossRefPubMedGoogle Scholar
  26. 26.
    Leonova L, Kokryakov VN, Aleshina G, Hong T, Nguyen T, Zhao C, Waring AJ, Lehrer RI (2001) Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol 70(3):461–464PubMedGoogle Scholar
  27. 27.
    Lehrer RI, Cole AM, Selsted ME (2012) θ-defensins: cyclic peptides with endless potential. J Biol Chem 287(32):27014–27019PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Tongaonkar P, Tran P, Roberts K, Schaal J, Ösapay G, Tran D, Ouellette AJ, Selsted ME (2011) Rhesus macaque θ-defensin isoforms: expression, antimicrobial activities, and demonstration of a prominent role in neutrophil granule microbicidal activities. J Leukoc Biol 89(2):283–290PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Garcia AE, Osapay G, Tran PA, Yuan J, Selsted ME (2008) Isolation, synthesis, and antimicrobial activities of naturally occurring theta-defensin isoforms from baboon leukocytes. Infect Immun 76(12):5883–5891. doi: 10.1128/IAI.01100-08 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Ouellette A, Selsted M (1996) Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J 10(11):1280–1289PubMedGoogle Scholar
  31. 31.
    Yeh R-F, Lim LP, Burge CB (2001) Computational inference of homologous gene structures in the human genome. Genome Res 11(5):803–816PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78–94CrossRefPubMedGoogle Scholar
  33. 33.
    Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31(13):3497–3500PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  36. 36.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166Google Scholar
  38. 38.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  39. 39.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376CrossRefPubMedGoogle Scholar
  40. 40.
    Hughes AL, Yeager M (1997) Coordinated amino acid changes in the evolution of mammalian defensins. J Mol Evol 44(6):675–682CrossRefPubMedGoogle Scholar
  41. 41.
    Liu L, Zhao C, Heng HH, Ganz T (1997) The human β-defensin-1 and α-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43(3):316–320CrossRefPubMedGoogle Scholar
  42. 42.
    Hughes AL, Piontkivska H (2008) Functional diversification of the toll-like receptor gene family. Immunogenetics 60(5):249–256. doi: 10.1007/s00251-008-0283-5 PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb) 96(1):7–21. doi: 10.1038/sj.hdy.6800724 Google Scholar
  44. 44.
    Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz R (1999) Phylogenetic perspectives in innate immunity. Science 284(5418):1313–1318CrossRefPubMedGoogle Scholar
  45. 45.
    Hughes AL (2002) Natural selection and the diversification of vertebrate immune effectors. Immunol Rev 190(1):161–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Diyan Li
    • 1
  • Long Zhang
    • 1
  • Huadong Yin
    • 1
  • Huailiang Xu
    • 2
  • Jessica Satkoski Trask
    • 3
  • David Glenn Smith
    • 3
  • Ying Li
    • 1
  • Mingyao Yang
    • 1
    Email author
  • Qing Zhu
    • 1
    Email author
  1. 1.Institute of Animal Genetics and BreedingSichuan Agricultural UniversityYa’anPeople’s Republic of China
  2. 2.College of Animal Science and TechnologySichuan Agricultural UniversityYa’anPeople’s Republic of China
  3. 3.Department of Anthropology and California National Primate Research CenterUniversity of California, DavisDavisUSA

Personalised recommendations