Molecular Biology Reports

, Volume 41, Issue 9, pp 5593–5606 | Cite as

Pattern of genetic variation of yellow catfish Pelteobagrus fulvidraco Richardso in Huaihe river and the Yangtze river revealed using mitochondrial DNA control region sequences



Genetic variability and population genetic structure of the yellow catfish Pelteobagrus fulvidraco Richardso in the Huaihe river and the Yangtze river was examined with a 810-bp of the mitochondrial DNA control region. A total of 70 haplotypes were identified from 145 samples, which were characterized with high haplotype diversity (h = 0.9832 ± 0.0041) but low nucleotide diversity (π = 0.0415 ± 0.0201). The analysis of molecular variance and phylogenetic reconstructions detected significant geographic structure between Huaihe river and Yangtze with FST = 0.1183 (P = 0.0000). Neighbor-joining (NJ) phylogenetic analyses identified two distinct clades (bootstrap support 99 %). The medium joining network drawn using the complete data set was reticulated and also distinctly split the 70 haplotypes into two groups corresponding to those of the NJ tree. Departures from neutrality were not significant for the Huaihe river and the Yangtze river Pelteobagrus fulvidraco, concordant with the observed multimodal mismatch distributions (P > 0.05), which suggested that the effective size of this species has been large and stable for a long period. The question about the existence of significant genetic differentiation for Pelteobagrus fulvidraco in the Yangtze river and Huaihe river basins remains to be further studied with molecular nuclear markers and larger sample sizes from throughout the river basins.


Pelteobagrus fulvidraco mtDNA control region Genetic variability Population structure 


  1. 1.
    Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  2. 2.
    Moritz C (2002) Strategies to protect biological diversity and the evolutionary process that sustain it. Syst Biol 51:238–254CrossRefPubMedGoogle Scholar
  3. 3.
    Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  4. 4.
    Slatkin M, Hudson R (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562PubMedCentralPubMedGoogle Scholar
  5. 5.
    Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  6. 6.
    Avise JC (2000) Phylogeography, the history and formation of species. Harward University Press, CambridgeGoogle Scholar
  7. 7.
    Moritz C, Schneider CJ, Wake DB (1992) Evolutionary relationships within the Ensatina eschotzii complex confirming the ring species interpretation. Syst Biol 41:273–291CrossRefGoogle Scholar
  8. 8.
    Brunsfeld SJ, Sullivan J, Soltis DE, Soltis P (2001) Comparative phylogeography of northwestern North America: a synthesis. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford, pp 319–339Google Scholar
  9. 9.
    Tudela S, Garcia Marin J, Pla C (1999) Genetic structure of the European anchovy, Engraulis encrasicolus, in the north-west Mediterranean. J Exp Mar Biol Ecol 234:95–109CrossRefGoogle Scholar
  10. 10.
    Bailey DJ, Gilligan CA (1997) Biological control of pathozone behaviour and disease dynamics of Rhizoctonia solani by Trichoderma viride. New Phytol 136:359–367CrossRefGoogle Scholar
  11. 11.
    Roldan MI, Perrotta RG, Cortey M, Pla C (2000) Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus. J Exp Mar Biol Ecol 253:63–74CrossRefPubMedGoogle Scholar
  12. 12.
    Shaklee JB, Currens KP (2003) Genetic stock identification and risk assessment. In: Hallerman EM (ed) Population genetics e principles and applications for fisheries scientists. American Fisheries Society, Bethesda, pp 291–328Google Scholar
  13. 13.
    Slatkin M (1994) Gene flow and population structure. In: Real LA (ed) Ecological genetics. Princeton University Press, Princeton, pp 3–17Google Scholar
  14. 14.
    Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522CrossRefGoogle Scholar
  15. 15.
    Aurell D, Berrebi P (2001) Genetic structure of brown trout (Salmo trutta, L.) populations from south-western France: data from mitochondrial control region variability. Mol Ecol 10:1551–1561CrossRefGoogle Scholar
  16. 16.
    Yan L, Wang DQ, Fang YL, Liu SH, Duan XB, Chang YH, Chen DQ (2008) Genetic diversity in the bronze gudgeon, Coreius heterodon, from the Yangtze river system based on mtDNA sequences of the control region. Environ Biol Fish 82:35–40CrossRefGoogle Scholar
  17. 17.
    Chu XL, Zheng BS, Dai DY (1999) Fauna sinica osteichthyes: siluriforme. Beijing Scientific & Technical Publishers, Beijing, pp 44–45Google Scholar
  18. 18.
    Zhou QB, Li FB, Zhou L, Gui JF (2006) RAPD markers between yellow catfish Pelteobagrus fulvidraco and long yellow catfish Pelteobagrus eupogon. Acta Hydrobiol Sin 30(2):482–485Google Scholar
  19. 19.
    Huang F, Yan AS, Xiong CX, Zheng R, Zhang GR (1999) Evaluation of nutrition and rate of flesh in the whole body of Pelteobagrus fulvidraco. Freshw Fish 29(10):3–6Google Scholar
  20. 20.
    Luo YS, Xia WF, Liu LG, Han Q, Wang WB, Li WJ (2001) Test of artificial propagation and fry culture on Pseudobagrus fulvidraco. Fish Sci 20(6):15–17Google Scholar
  21. 21.
    Xiao TY, Zhang HY, Wang XQ, Xiao KY, Dai ZY (2003) Biological characteristics of Pelteobagrus fulvidraco in Dongting lake. Chin J Zool 38(5):83–88Google Scholar
  22. 22.
    Fu PS, Zheng YZ, Zhu YA, Wang YX, Yang L, Wang LM (2003) Biological characteristic and breeding techniques of Pelterobagrus fulvidraco. Shandong Fish 20(8):15–17Google Scholar
  23. 23.
    Wang JQ, Wang WH, Li WK, Luo XN, Li JW (2005) Effects of dietary protein and vitamin C levels on growth and immunity of juvenile Pelteobagrus fulvidraco. J Fish Chin 29(4):512–518Google Scholar
  24. 24.
    Chen C, Xiong J, Zuo YS, Ma XR, Liu Q, Tan QS, Yang RB (2010) Effects of vitamin E levels on growth performance and immune function of juvenile Pelteobagrus fulvidraco. J Fish Sci Chin 17(3):521–526Google Scholar
  25. 25.
    Sheng ZM, Huang W, Zhang YJ, Yang HL, Ma LM, Xu XL, Xia L (2012) Effect of complex Chinese herbs on non-specific immune function and disease resistance in yellow catfish (Pelteobagrus fulvidraco R.) by oral administration. J Huazhong Agric Univ 31(2):243–246Google Scholar
  26. 26.
    Dai FT, Su JX (1998) Studies on isozymes characters of eight bagrid catfishes and comments on phylogenesis relationship [J]. Acta Zootaxonomica Sin 23(4):432–439Google Scholar
  27. 27.
    Wang ZW, Wu QJ, Zhou JF, Ye YZ (2004) Geographic distribution of Pelteobagrus fulvidraco and Pelteobagrus vachelli in the Yangtze river based on mitochondrial DNA markers. Biochem Genet 42(11):391–400CrossRefPubMedGoogle Scholar
  28. 28.
    Fang YL, Wang DQ, Liu SP, Wu G, Liao FC, Chen DQ (2005) Variation in mitochondrial DNA of Peheobagrus fulvidraco from three lakes in the middle Yangtze river. J Fish Sci Chin 12(1):56–61Google Scholar
  29. 29.
    Guo JF, Wang Y, Ma HY, Yue YS (2006) Microsatellite marker analysis of genetic diversity and phylogenetic relationships in three populations of Pseudobagrus fulvidraco. Amino Acids Biot Resour 28(3):5–8Google Scholar
  30. 30.
    Ku XY, Peng ZG, Diogo R, He SP (2007) MtDNA phylogeny provides evidence of generic polyphyleticism for East Asian bagrid catfishes. Hydrobiologia 579:147–159CrossRefGoogle Scholar
  31. 31.
    Wu QC, Liang HW, Li Z, Hu GF, Luo XZ, Shen ZW, Zou GW (2010) Isolation of microsatellite markers in the yellow catfish and its application in genetic structure in three wild populations. Biotechnol Bull 3:5–8Google Scholar
  32. 32.
    Zhong LQ, Liu PP, Pan JL, Wang MH, Chen YM, Qin Q, Bian WJ, Chen JH (2013) Genetic variation analysis of yellow catfish (Pelteobagrus fulvidraco) from five lakes in the middle and lower reaches of the Yangtze river based on mitochondrial DNA control region. Mitochondrial DNA. doi:10.3109/19401736.2013.770491 Google Scholar
  33. 33.
    Li SF, Wang Q, Chen YL (1986) Biochemical genetic structure and variations in natural populations of silver carp, bighead carp and grass carp in the Changjiang river, Pearl river and Heilongjiang river. J Fish Chin 10(4):351–372Google Scholar
  34. 34.
    Tang QY, Yang XP, Liu HZ (2003) Biogeographical process of Spinibarbus caldwelli revealed by sequence variations of mitochondrial cytochrome b gene. Acta Hydrobiol Sin 27(4):352Google Scholar
  35. 35.
    Cheng QQ, Ma CY, Zhuang P, Sha ZX, Lu X, Miao J (2008) Genetic structure and evolution characters in three populations of Coilia mystus based on cytochrome b gene segment sequence of mitochondrial DNA. J Fish Chin 32(1):1–7Google Scholar
  36. 36.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  37. 37.
    Zhang Y, Zhang E, He SP (2003) Studies on the structure of the control region of the bagridae in China and its phylogenetic significance. Acta Hydrobiol Sin 27(5):463–467Google Scholar
  38. 38.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  39. 39.
    Rozas J, Sánchez-del Barrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  40. 40.
    Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Association, SunderlandGoogle Scholar
  41. 41.
    Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  42. 42.
    Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  43. 43.
    Cassens I, Waerebeek K, Best P, Crespo E, Reyes J, Milinkovitch M (2003) The phylogeography of dusky dolphins (Lagenorhynchus obscurus): a critical examination of network methods and rooting procedure. Mol Ecol 12:1781–1792CrossRefPubMedGoogle Scholar
  44. 44.
    Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0. An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedCentralGoogle Scholar
  45. 45.
    Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  46. 46.
    Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:476–494Google Scholar
  47. 47.
    Fu Y (1997) Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedCentralPubMedGoogle Scholar
  48. 48.
    Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601PubMedCentralPubMedGoogle Scholar
  49. 49.
    Kong LJ (2003) Study on the artificial propagation of Pelteobagrus fulvidraco [M]. Northeast Agricultural University, Harbin, pp 1–3Google Scholar
  50. 50.
    Watanabe K, Nishida M (2003) Genetic population structure of Japanese bagrid catfishes. Ichthyol Res 50:140–148CrossRefGoogle Scholar
  51. 51.
    Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefPubMedGoogle Scholar
  52. 52.
    Huey JA, Hughes JM, Baker AM (2006) Patterns of gene flow in two species of eel-tailed catfish, Neosilurus hyrtlii and Porochilus argenteus (Siluriformes: Plotosidae), in western Queensland’s dryland rivers. Biol J Linn Soc 87:457–467CrossRefGoogle Scholar
  53. 53.
    Watanabe K, Hong N, Liaw J, Zhang CG, Jeon SR, Nishida M (2007) Comparative phylogeography of bagrid catfishes in Taiwan. Ichthyol Res 54:253–261CrossRefGoogle Scholar
  54. 54.
    Nakorn NU, Sukmanomon S, Nakajima M, Taniguchi N, Kamonrat W, Poompuang S, Nguyen TTT (2006) MtDNA diversity of the critically endangered Mekong giant catfish (Pangasianodon gigas Chevey, 1913) and closely related species: implications for conservation. Anim Conserv 9:483–494CrossRefGoogle Scholar
  55. 55.
    Fajen A, Breden F (1992) Mitochondrial DNA sequence variation among natural populations of the Trinidad guppy, Poecilia reticulata. Evolution 46:1457–1465CrossRefGoogle Scholar
  56. 56.
    Lee WJ, Howell H, Kocher TD (1995) Structure and evolution of the teleost mitochondrial control regions. J Mol Evol 41:54–66CrossRefPubMedGoogle Scholar
  57. 57.
    Salzburger W, Brandastter A, Gilles A, Parson W, Hempel M, Sturmbauer C, Meyer A (2003) Phylogeography of the vairone (Leuciscus souffia, Risso 1826) in Central Europe. Mol Ecol 12:2371–2386CrossRefPubMedGoogle Scholar
  58. 58.
    Aboim MA, Menezes GM, Schlitt T, Rogers AD (2005) Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred form mtDNA sequence analysis. Mol Ecol 14:1343–1354CrossRefPubMedGoogle Scholar
  59. 59.
    Baxter RM (1977) Environmental effects of dams impoundments. Annu Rev Ecol Syst 8:255–283CrossRefGoogle Scholar
  60. 60.
    Dudgeon D (2000) The ecology of tropical Asian rivers and streams in relation to biodiversity conservation. Annu Rev Ecol Syst 31:239–263CrossRefGoogle Scholar
  61. 61.
    Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in northern third of the world. Science 266:753–762CrossRefPubMedGoogle Scholar
  62. 62.
    Hansen MM, Ruzzante DE, Nielsen EE, Bekkevold D, Mensberg KLD (2002) Long-term effective populations sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Mol Ecol 11:2523–2535CrossRefPubMedGoogle Scholar
  63. 63.
    Meldgaard T, Nielsen EE, Loeschcke V (2003) Fragmentation by weirs in a riverine system: a study of genetic variation in time and space among populations of European grayling (Thymallus thymallus) in a Danish river system. Conserv Genet 4:735–747CrossRefGoogle Scholar
  64. 64.
    Ha CY, Zhu JQ, Ye NJ, Huang JJ, Gong JS, Lu H (2005) Formation and evolution of forgotten delta-the Huaihe river delta, eastern China. Geol Bull Chin 24(12):1094–1106Google Scholar
  65. 65.
    Hartl DL, Clark AG (1997) Organization of genetic variation. In: Hartl DL, Clark AG (eds) Principles of population genetics, 3rd edn. Sinauer Associates, Inc. Publishers, Sunderland, pp 74–110Google Scholar
  66. 66.
    Wright S (1978) Evolution and the genetics of population, variability within and among natural populations. The University of Chicago Press, ChicagoGoogle Scholar
  67. 67.
    Luikart G, England P, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994CrossRefPubMedGoogle Scholar
  68. 68.
    Harpending HC, Sherry ST, Rogers AR, Stoneking M (1993) The genetic structure of ancient human populations. Curr Anthropol 34:483–496CrossRefGoogle Scholar
  69. 69.
    Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103CrossRefPubMedGoogle Scholar
  70. 70.
    van Tienderen PH, de Haan AA, van der Linden CG, Vosman B (2002) Biodiversity assessment using markers for ecologically important trait. Trends Ecol Evol 17:577–582CrossRefGoogle Scholar
  71. 71.
    Bekessy SA, Ennos RA, Burgman MA, Newton AC, Ades PK (2003) Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. Biol Conserv 110:267–275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.College of Life ScienceAnhui Science and Technology UniversityFengyangChina

Personalised recommendations