Advertisement

Molecular Biology Reports

, Volume 41, Issue 5, pp 3349–3357 | Cite as

Thymidylate synthase polymorphisms are associated to therapeutic outcome of advanced non-small cell lung cancer patients treated with platinum-based chemotherapy

  • Aurea Lima
  • Vítor Seabra
  • Sandra Martins
  • Ana Coelho
  • António Araújo
  • Rui Medeiros
Article

Abstract

Thymidylate synthase (TYMS) has three polymorphisms that may modulate thymidylate synthase (TS) expression levels: (1) 28 base pairs (bp) variable number tandem repeat (VNTR) (rs34743033); (2) single nucleotide polymorphism (SNP) C>G at the twelfth nucleotide of the second repeat of 3R allele (rs2853542); and (3) 6 bp sequence deletion (1494del6, rs34489327). This study was conducted to evaluate the influence of TYMS polymorphisms on the survival of Portuguese patients with advanced non-small cell lung cancer (NSCLC) undergoing platinum-based chemotherapy. Our results showed no statistically significant differences between VNTR genotypes; although, considering the SNP C>G, homozygotes 3RG presented a better prognostic at 36 months (p = 0.004) and overall survival (p = 0.003) when compared to 2R3RG patients. Patients with “median/high expression genotypes” demonstrated a better survival at 12 months (p = 0.041) when compared to “low expression genotypes”. Furthermore, 6 bp− carriers (p = 0.006) showed a better survival at 12 months when compared to 6 bp+ homozygotes patients. When analyzing TYMS haplotypes, better survival at 12 months was observed for patients carrying haplotypes with the 6 bp− allele (2R6 bp−; p = 0.026 and 3RG6 bp−; p = 0.045). This is the first report that evaluates the three major TYMS polymorphisms in the therapeutic outcome of NSCLC in Portugal. According to our results, the TYMS polymorphisms may be useful tools to predict which advanced NSCLC patients could benefit more from platinum-based chemotherapy regimens.

Keywords

NSCLC Platinum-based chemotherapy Polymorphisms Therapeutic outcome Thymidylate synthase 

Notes

Acknowledgments

The authors wish to acknowledge the Ministry of Health of Portugal (CFICS-Project 31/2007) and Astrazeneca Foundation for the financial support; Liga Portuguesa Contra o CancroCentro Regional do Norte (Portuguese League Against Cancer) for the support to the lab; and to Fundação para a Ciência e Tecnologia (FCT) for the Doctoral Grant (SFRH/BD/64441/2009) for Aurea Lima. Authors would also like to acknowledge Hugo Sousa (Ph.D.) for his critics in the final version of the manuscript.

References

  1. 1.
    Alberg AJ, Brock MV, Samet JM (2005) Epidemiology of lung cancer: looking to the future. J Clin Oncol 23(14):3175–3185. doi: 10.1200/JCO.2005.10.462 CrossRefPubMedGoogle Scholar
  2. 2.
    Beane J, Spira A, Lenburg ME (2009) Clinical impact of high-throughput gene expression studies in lung cancer. J Thorac Oncol 4(1):109–118. doi: 10.1097/JTO.0b013e31819151f8 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    National Comprehensive Cancer Network (2012) NCCN clinical practice guidelines in oncology (NCCN guidelines)—non-small cell lung cancer. Version 2. http://www.tri-kobe.org/nccn/guideline/lung/english/small.pdf. Accessed 29 April 2013
  4. 4.
    Watters JW, McLeod HL (2003) Cancer pharmacogenomics: current and future applications. Biochim Biophys Acta 1603(2):99–111. doi: 10.1016/S0304-419X(03)00003-9 PubMedGoogle Scholar
  5. 5.
    Lima A, Azevedo R, Sousa H, Seabra V, Medeiros R (2013) Current approaches for TYMS polymorphisms and their importance in molecular epidemiology and pharmacogenetics. Pharmacogenomics 14(11):1337–1351. doi: 10.2217/pgs.13.118 CrossRefPubMedGoogle Scholar
  6. 6.
    Carreras CW, Santi DV (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64:721–762. doi: 10.1146/annurev.bi.64.070195.003445 CrossRefPubMedGoogle Scholar
  7. 7.
    Horie N, Aiba H, Oguro K, Hojo H, Takeishi K (1995) Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 20(3):191–197CrossRefPubMedGoogle Scholar
  8. 8.
    Danenberg PV (1977) Thymidylate synthetase—a target enzyme in cancer chemotherapy. Biochim Biophys Acta 473(2):73–92. doi: 10.1016/0304-419X(77)90001-4 PubMedGoogle Scholar
  9. 9.
    Marsh S, McKay JA, Cassidy J, McLeod HL (2001) Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int J Oncol 19(2):383–386PubMedGoogle Scholar
  10. 10.
    Kaneda S, Takeishi K, Ayusawa D, Shimizu K, Seno T, Altman S (1987) Role in translation of a triple tandemly repeated sequence in the 5′-untranslated region of human thymidylate synthase mRNA. Nucleic Acids Res 15(3):1259–1270. doi: 10.1093/nar/15.3.1259 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Kawakami K, Salonga D, Park JM, Danenberg KD, Uetake H, Brabender J, Omura K, Watanabe G, Danenberg PV (2001) Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression. Clin Cancer Res 7(12):4096–4101PubMedGoogle Scholar
  12. 12.
    Pullarkat ST, Stoehlmacher J, Ghaderi V, Xiong YP, Ingles SA, Sherrod A, Warren R, Tsao-Wei D, Groshen S, Lenz HJ (2001) Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 1(1):65–70CrossRefPubMedGoogle Scholar
  13. 13.
    Kawakami K, Omura K, Kanehira E, Watanabe Y (1999) Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. Anticancer Res 19(4B):3249–3252PubMedGoogle Scholar
  14. 14.
    Kaneda S, Nalbantoglu J, Takeishi K, Shimizu K, Gotoh O, Seno T, Ayusawa D (1990) Structural and functional analysis of the human thymidylate synthase gene. J Biol Chem 265(33):20277–20284PubMedGoogle Scholar
  15. 15.
    Mandola MV, Stoehlmacher J, Muller-Weeks S, Cesarone G, Yu MC, Lenz HJ, Ladner RD (2003) A novel single nucleotide polymorphism within the 5′ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res 63(11):2898–2904PubMedGoogle Scholar
  16. 16.
    Kawakami K, Watanabe G (2003) Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res 63(18):6004–6007PubMedGoogle Scholar
  17. 17.
    Ulrich CM, Bigler J, Velicer CM, Greene EA, Farin FM, Potter JD (2000) Searching expressed sequence tag databases: discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol Biomark Prev 9(12):1381–1385Google Scholar
  18. 18.
    Lecomte T, Ferraz JM, Zinzindohoue F, Loriot MA, Tregouet DA, Landi B, Berger A, Cugnenc PH, Jian R, Beaune P, Laurent-Puig P (2004) Thymidylate synthase gene polymorphism predicts toxicity in colorectal cancer patients receiving 5-fluorouracil-based chemotherapy. Clin Cancer Res 10(17):5880–5888. doi: 10.1158/1078-0432 CrossRefPubMedGoogle Scholar
  19. 19.
    Dotor E, Cuatrecases M, Martinez-Iniesta M, Navarro M, Vilardell F, Guino E, Pareja L, Figueras A, Mollevi DG, Serrano T, de Oca J, Peinado MA, Moreno V, Germa JR, Capella G, Villanueva A (2006) Tumor thymidylate synthase 1494del6 genotype as a prognostic factor in colorectal cancer patients receiving fluorouracil-based adjuvant treatment. J Clin Oncol 24(10):1603–1611. doi: 10.1200/JCO.2005.03.5253 CrossRefPubMedGoogle Scholar
  20. 20.
    Mountain CF (1986) A new international staging system for lung cancer. Chest 89(4 Suppl):225S–233S. doi: 10.1378/chest.89.4_Supplement.225S CrossRefPubMedGoogle Scholar
  21. 21.
    Mountain CF (1997) Revisions in the international system for staging lung cancer. Chest 111(6):1710–1717CrossRefPubMedGoogle Scholar
  22. 22.
    Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50. doi: 10.4137/EBO.S0 PubMedCentralGoogle Scholar
  23. 23.
    Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70(2):425–434. doi: 10.1086/338688 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Lurje G, Zhang W, Yang D, Groshen S, Hendifar AE, Husain H, Nagashima F, Chang HM, Fazzone W, Ladner RD, Pohl A, Ning Y, Iqbal S, El-Khoueiry A, Lenz HJ (2008) Thymidylate synthase haplotype is associated with tumor recurrence in stage II and stage III colon cancer. Pharmacogenet Genomics 18(2):161–168. doi: 10.1097/FPC.0b013e3282f4aea6 CrossRefPubMedGoogle Scholar
  25. 25.
    Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73(5):1162–1169. doi: 10.1086/379378 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Johnston PG, Lenz HJ, Leichman CG, Danenberg KD, Allegra CJ, Danenberg PV, Leichman L (1995) Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 55(7):1407–1412PubMedGoogle Scholar
  27. 27.
    Lenz HJ, Hayashi K, Salonga D, Danenberg KD, Danenberg PV, Metzger R, Banerjee D, Bertino JR, Groshen S, Leichman LP, Leichman CG (1998) p53 Point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival. Clin Cancer Res 4(5):1243–1250PubMedGoogle Scholar
  28. 28.
    Edler D, Glimelius B, Hallstrom M, Jakobsen A, Johnston PG, Magnusson I, Ragnhammar P, Blomgren H (2002) Thymidylate synthase expression in colorectal cancer: a prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy. J Clin Oncol 20(7):1721–1728CrossRefPubMedGoogle Scholar
  29. 29.
    Kawakami K, Ishida Y, Danenberg KD, Omura K, Watanabe G, Danenberg PV (2002) Functional polymorphism of the thymidylate synthase gene in colorectal cancer accompanied by frequent loss of heterozygosity. Jpn J Cancer Res 93(11):1221–1229CrossRefPubMedGoogle Scholar
  30. 30.
    DiPaolo A, Chu E (2004) The role of thymidylate synthase as a molecular biomarker. Clin Cancer Res 10(2):411–412. doi: 10.1158/1078-0432 CrossRefPubMedGoogle Scholar
  31. 31.
    Kristensen MH, Pedersen PL, Melsen GV, Ellehauge J, Mejer J (2010) Variants in the dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase and thymidylate synthase genes predict early toxicity of 5-fluorouracil in colorectal cancer patients. J Int Med Res 38(3):870–883. doi: 10.1177/147323001003800313 CrossRefPubMedGoogle Scholar
  32. 32.
    Brody JR, Hucl T, Gallmeier E, Winter JM, Kern SE, Murphy KM (2006) Genomic copy number changes affecting the thymidylate synthase (TYMS) gene in cancer: a model for patient classification to aid fluoropyrimidine therapy. Cancer Res 66(19):9369–9373. doi: 10.1158/0008-5472.CAN-06-2165 CrossRefPubMedGoogle Scholar
  33. 33.
    Etienne MC, Chazal M, Laurent-Puig P, Magne N, Rosty C, Formento JL, Francoual M, Formento P, Renee N, Chamorey E, Bourgeon A, Seitz JF, Delpero JR, Letoublon C, Pezet D, Milano G (2002) Prognostic value of tumoral thymidylate synthase and p53 in metastatic colorectal cancer patients receiving fluorouracil-based chemotherapy: phenotypic and genotypic analyses. J Clin Oncol 20(12):2832–2843CrossRefPubMedGoogle Scholar
  34. 34.
    Uchida K, Hayashi K, Kawakami K, Schneider S, Yochim JM, Kuramochi H, Takasaki K, Danenberg KD, Danenberg PV (2004) Loss of heterozygosity at the thymidylate synthase (TS) locus on chromosome 18 affects tumor response and survival in individuals heterozygous for a 28-bp polymorphism in the TS gene. Clin Cancer Res 10(2):433–439. doi: 10.1158/1078-0432.CCR-0200-03 CrossRefPubMedGoogle Scholar
  35. 35.
    Wang TL, Diaz LA Jr, Romans K, Bardelli A, Saha S, Galizia G, Choti M, Donehower R, Parmigiani G, Shih Ie M, Iacobuzio-Donahue C, Kinzler KW, Vogelstein B, Lengauer C, Velculescu VE (2004) Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci USA 101(9):3089–3094. doi: 10.1073/pnas.0308716101 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Ooyama A, Okayama Y, Takechi T, Sugimoto Y, Oka T, Fukushima M (2007) Genome-wide screening of loci associated with drug resistance to 5-fluorouracil-based drugs. Cancer Sci 98(4):577–583. doi: 10.1111/j.1349-7006.2007.00424.x CrossRefPubMedGoogle Scholar
  37. 37.
    Jakobsen A, Nielsen JN, Gyldenkerne N, Lindeberg J (2005) Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphism in normal tissue as predictors of fluorouracil sensitivity. J Clin Oncol 23(7):1365–1369. doi: 10.1200/JCO.2005.06.219 CrossRefPubMedGoogle Scholar
  38. 38.
    Li WJ, Jiang H, Fang XJ, Ye HL, Liu MH, Liu YW, Chen Q, Zhang L, Zhang JY, Yuan CL, Zhang QY (2013) Polymorphisms in thymidylate synthase and reduced folate carrier (SLC19A1) genes predict survival outcome in advanced non-small cell lung cancer patients treated with pemetrexed-based chemotherapy. Oncol Lett 5(4):1165–1170. doi: 10.3892/ol.2013.1175ol-05-04-1165 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Wang X, Wang Y, Cheng J, Ha M (2013) Association of thymidylate synthase gene 3′-untranslated region polymorphism with sensitivity of non-small cell lung cancer to pemetrexed treatment: TS gene polymorphism and pemetrexed sensitivity in NSCLC. J Biomed Sci 20:5. doi: 10.1186/1423-0127-20-51423-0127-20-5 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Mandola MV, Stoehlmacher J, Zhang W, Groshen S, Yu MC, Iqbal S, Lenz HJ, Ladner RD (2004) A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics 14(5):319–327CrossRefPubMedGoogle Scholar
  41. 41.
    Merkelbach-Bruse S, Hans V, Mathiak M, Sanguedolce R, Alessandro R, Ruschoff J, Buttner R, Houshdaran F, Gullotti L (2004) Associations between polymorphisms in the thymidylate synthase gene, the expression of thymidylate synthase mRNA and the microsatellite instability phenotype of colorectal cancer. Oncol Rep 11(4):839–843PubMedGoogle Scholar
  42. 42.
    Ulrich CM, Bigler J, Bostick R, Fosdick L, Potter JD (2002) Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res 62(12):3361–3364PubMedGoogle Scholar
  43. 43.
    Graziano F, Kawakami K, Watanabe G, Ruzzo A, Humar B, Santini D, Catalano V, Ficarelli R, Merriman T, Panunzi S, Testa E, Cascinu S, Bearzi I, Tonini G, Magnani M (2004) Association of thymidylate synthase polymorphisms with gastric cancer susceptibility. Int J Cancer 112(6):1010–1014. doi: 10.1002/ijc.20489 CrossRefPubMedGoogle Scholar
  44. 44.
    Kawakami K, Graziano F, Watanabe G, Ruzzo A, Santini D, Catalano V, Bisonni R, Arduini F, Bearzi I, Cascinu S, Muretto P, Perrone G, Rabitti C, Giustini L, Tonini G, Pizzagalli F, Magnani M (2005) Prognostic role of thymidylate synthase polymorphisms in gastric cancer patients treated with surgery and adjuvant chemotherapy. Clin Cancer Res 11(10):3778–3783. doi: 10.1158/1078-0432.CCR-04-2428 CrossRefPubMedGoogle Scholar
  45. 45.
    Fernandez-Contreras ME, Sanchez-Hernandez JJ, Gonzalez E, Herraez B, Dominguez I, Lozano M, Garcia De Paredes ML, Munoz A, Gamallo C (2009) Combination of polymorphisms within 5′ and 3′ untranslated regions of thymidylate synthase gene modulates survival in 5 fluorouracil-treated colorectal cancer patients. Int J Oncol 34(1):219–229. doi: 10.3892/ijo_00000144 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Aurea Lima
    • 1
    • 2
    • 3
  • Vítor Seabra
    • 1
  • Sandra Martins
    • 4
  • Ana Coelho
    • 2
    • 5
  • António Araújo
    • 2
    • 6
  • Rui Medeiros
    • 2
    • 3
    • 7
  1. 1.IINFACTS/CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Pharmaceutical SciencesHigher Institute of Health Sciences (ISCS-N)Gandra PRDPortugal
  2. 2.Molecular Oncology Group CIPortuguese Institute of Oncology of Porto (IPO-Porto)PortoPortugal
  3. 3.Abel Salazar Institute for the Biomedical Sciences (ICBAS)University of PortoPortoPortugal
  4. 4.Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
  5. 5.Faculty of Medicine of University of Porto (FMUP)PortoPortugal
  6. 6.Medical Oncology DepartmentPortuguese Institute of Oncology of Porto (IPO-Porto)PortoPortugal
  7. 7.Research DepartmentPortuguese League Against Cancer (LPCC-NRNorte)PortoPortugal

Personalised recommendations