Molecular Biology Reports

, Volume 41, Issue 5, pp 3235–3243 | Cite as

Association of ESR1 and C6orf97 gene polymorphism with osteoporosis in postmenopausal women

  • Lianmei Luo
  • Weibo Xia
  • Min Nie
  • Yue Sun
  • Yan Jiang
  • Jing Zhao
  • Shuli He
  • Ling Xu


The estrogen receptor 1 (ESR1) and Chromosome 6 Open Reading Frame 97 (C6orf97) gene polymorphisms were earlier reported to be associated with osteoporosis in the European cohort. The aim of this study was to investigate the association of four single nucleotide polymorphisms (SNP) with bone mineral density (BMD), fracture, vertebral fracture, bone turnover or 25-hydroxyvitamin D [25(OH)D] in 1,753 randomly selected postmenopausal women in China. Vertebral fracture, BMD of lumbar spine (2–4), femoral neck and total hip were measured respectively. Serum N-terminal procollagen of type 1 collagen (P1NP), β-isomerized type I collagen C-telopeptide breakdown products (β-CTX) and 25(OH)D3 were also determined. Binary logistic regression revealed significant associations between fracture risk with rs1999805 (P = 0.041, OR 1.633, 95 %CI 1.020–2.616) and rs6929137 (P = 0.005, OR 1.932, 95 %CI 1.226–3.045) in recessive model. Significant association was also observed between vertebral fracture risk and rs1038304 (P = 0.039, OR 0.549, 95 %CI 0.311–0.969) in recessive model. Liner regression analyses showed that only the CC group of rs4870044 was significantly associated with total hip in dominant model (P = 0.034). Our findings suggest that ESR1 and C6orf97 gene polymorphism is associated with fracture and vertebral fracture risk in Chinese postmenopausal women.


Single-nucleotide polymorphism (SNP) Postmenopausal osteoporosis Vertebral fracture ESR1 C6orf97 


Conflict of interest



  1. 1.
    Genant HK, Cooper C, Poor G et al (1999) Interim report and recommendations of the world health organization task-force for osteoporosis. Osteoporos Int 10:259–264CrossRefPubMedGoogle Scholar
  2. 2.
    Melton LJ 3rd, Khosla S, Atkinson EJ et al (1997) Relationship of bone turnover to bone density and fractures. J Bone Miner Res 12:1083–1091CrossRefPubMedGoogle Scholar
  3. 3.
    Gerdhem P, Ivaska KK, Alatalo SL et al (2004) Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 19:386–393CrossRefPubMedGoogle Scholar
  4. 4.
    Grundberg E, Lau EM, Pastinen T et al (2007) Vitamin D receptor 3′ haplotypes are unequally expressed in primary human bone cells and associated with increased fracture risk: the MrOS Study in Sweden and Hong Kong. J Bone Miner Res 22:832–840CrossRefPubMedGoogle Scholar
  5. 5.
    Abrams SA, Griffin IJ, Hawthorne KM et al (2005) Vitamin D receptor Fok1 polymorphisms affect calcium absorption, kinetics, and bone mineralization rates during puberty. J Bone Miner Res 20:945–953CrossRefPubMedGoogle Scholar
  6. 6.
    Albagha OM, Pettersson U, Stewart A et al (2005) Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J Med Genet 42:240–246PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Niu T, Chen C, Cordell H et al (1999) A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet 104:226–233CrossRefPubMedGoogle Scholar
  8. 8.
    Ralston SH, Uitterlinden AG, Brandi ML et al (2006) Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med 3:e90PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    van Meurs JB, Trikalinos TA, Ralston SH et al (2008) Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299:1277–1290PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Lau HH, Ng MY, Ho AY et al (2005) Genetic and environmental determinants of bone mineral density in Chinese women. Bone 36:700–709CrossRefPubMedGoogle Scholar
  11. 11.
    Kiel DP, Demissie S, Dupuis J et al (2007) Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet 8(Suppl 1):S14PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Styrkarsdottir U, Halldorsson BV, Gretarsdottir S et al (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang YP, Deng FY, Chen Y et al (2010) Replication study of candidate genes/loci associated with osteoporosis based on genome-wide screening. Osteoporos Int 21:785–795PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Sano M, Inoue S, Hosoi T et al (1995) Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Commun 217:378–383CrossRefPubMedGoogle Scholar
  15. 15.
    Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H (1996) Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 11:306–311CrossRefPubMedGoogle Scholar
  16. 16.
    van Meurs JB, Schuit SC, Weel AE et al (2003) Association of 5′ estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Hum Mol Genet 12:1745–1754CrossRefPubMedGoogle Scholar
  17. 17.
    Styrkarsdottir U, Halldorsson BV, Gretarsdottir S et al (2009) New sequence variants associated with bone mineral density. Nat Genet 41:15–17CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao J, Xia W, Nie M et al (2011) The levels of bone turnover markers in Chinese postmenopausal women: peking vertebral fracture study. Menopause 18:1237–1243CrossRefPubMedGoogle Scholar
  19. 19.
    Kocks J, Ward K, Mughal Z, Moncayo R, Adams J, Hogler W (2010) Z-score comparability of bone mineral density reference databases for children. J Clin Endocrinol Metab 95:4652–4659CrossRefPubMedGoogle Scholar
  20. 20.
    Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994, 843:1–129Google Scholar
  21. 21.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148CrossRefPubMedGoogle Scholar
  22. 22.
    Heemstra KA, Soeters MR, Fliers E et al (2009) Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting. J Clin Endocrinol Metab 94:2144–2150CrossRefPubMedGoogle Scholar
  23. 23.
    Roshandel D, Holliday KL, Pye SR et al (2010) Genetic variation in the RANKL/RANK/OPG signaling pathway is associated with bone turnover and bone mineral density in men. J Bone Miner Res 25:1830–1838CrossRefPubMedGoogle Scholar
  24. 24.
    Ferrari SL, Garnero P, Emond S, Montgomery H, Humphries SE, Greenspan SL (2001) A functional polymorphic variant in the interleukin-6 gene promoter associated with low bone resorption in postmenopausal women. Arthritis Rheum 44:196–201CrossRefPubMedGoogle Scholar
  25. 25.
    Yao S, Sucheston LE, Smiley SL et al (2011) Common genetic variants are associated with accelerated bone mineral density loss after hematopoietic cell transplantation. PLoS ONE 6:e25940PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Li N, Wang X, Jiang Y et al (2013) Association of GALNT3 gene polymorphisms with bone mineral density in Chinese postmenopausal women: the peking vertebral fracture study. Menopause 18:1237–1243Google Scholar
  27. 27.
    Cheng BH, Wang TH, Kang HY et al (2013) Association between single nucleotide polymorphisms of the estrogen receptor 1 and receptor activator of nuclear factor kappa B ligand genes and bone mineral density in postmenopausal Taiwanese. Taiwan J Obstet Gynecol 52:197–203CrossRefPubMedGoogle Scholar
  28. 28.
    Marozik P, Mosse I, Alekna V et al (2013) Association between polymorphisms of VDR,COL1A1, and LCT genes and bone mineral density in belarusian women with severe postmenopausal osteoporosis. Medicina (Kaunas) 49:177–184Google Scholar
  29. 29.
    Gonzalez-Mercado A, Sanchez-Lopez JY, Regla-Nava JA et al (2013) Association analysis of vitamin D receptor gene polymorphisms and bone mineral density in postmenopausal Mexican-Mestizo women. Genet Mol Res 12:2755–2763CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lianmei Luo
    • 1
  • Weibo Xia
    • 2
  • Min Nie
    • 3
  • Yue Sun
    • 2
  • Yan Jiang
    • 2
  • Jing Zhao
    • 4
  • Shuli He
    • 5
  • Ling Xu
    • 6
  1. 1.Department of Obstetrics and Gynecology & Beijing Tsinghua Chang Gung Hospital of Tsinghua UniversityBeijingChina
  2. 2.Department of Endocrinology & Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
  3. 3.Department of Endocrinology, Key Laboratory of Endocrine, Ministry of Health, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
  4. 4.National Health Group, Family Medicine ResidencySingaporeSingapore
  5. 5.Department of Nutrition, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
  6. 6.Department of Obstetrics and Gynecology & Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina

Personalised recommendations