Advertisement

Molecular Biology Reports

, Volume 41, Issue 5, pp 3113–3125 | Cite as

Multivariate meta-analysis of the association of G-protein beta 3 gene (GNB3) haplotypes with cardiovascular phenotypes

  • Tiago V. Pereira
  • Lilian Kimura
  • Yasushi Suwazono
  • Hideaki Nakagawa
  • Makoto Daimon
  • Toshihide Oizumi
  • Takamasa Kayama
  • Takeo Kato
  • Liao Li
  • Shufeng Chen
  • Dongfeng Gu
  • Wilfried Renner
  • Winfried März
  • Yoshiji Yamada
  • Pantelis G. Bagos
  • Regina C. Mingroni-Netto
Article

Abstract

The objective of the present study was to review previous investigations on the association of haplotypes in the G-protein β3 subunit (GNB3) gene with representative cardiovascular risk factors/phenotypes: hypertension, overweight, and variation in the systolic and diastolic blood pressures (SBP and DBP, respectively) and as well as body mass index (BMI). A comprehensive literature search was undertaken in Pubmed, Web of Science, EMBASE, Biological Abstracts, LILACS and Google Scholar to identify potentially relevant articles published up to April 2011. Six genetic association studies encompassing 16,068 participants were identified. Individual participant data were obtained for all studies. The three most investigated GNB3 polymorphisms (G-350A, C825T and C1429T) were considered. Expectation–maximization and generalized linear models were employed to estimate haplotypic effects from data with uncertain phase while adjusting for covariates. Study-specific results were combined through a random-effects multivariate meta-analysis. After carefully adjustments for relevant confounding factors, our analysis failed to support a role for GNB3 haplotypes in any of the investigated phenotypes. Sensitivity analyses excluding studies violating Hardy–Weinberg expectations, considering gender-specific effects or more extreme phenotypes (e.g. obesity only) as well as a fixed-effects “pooled” analysis also did not disclose a significant influence of GNB3 haplotypes on cardiovascular phenotypes. We conclude that the previous cumulative evidence does not support the proposal that haplotypes formed by common GNB3 polymorphisms might contribute either to the development of hypertension and obesity, or to the variation in the SBP, DBP and BMI.

Keywords

Meta-analysis Haplotypes GNB3 Polymorphism Hypertension 

Notes

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil, to T.V.P.). This work was also supported in part by the Global Center of Excellence Program (No. F03, to M.D.) founded by the Japan Society for the Promotion of Science, Japan (to Y.S.) and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Numbers 18209023, 18018021, and 19659149 to Y.Y.).

Conflict of interest

None.

Supplementary material

11033_2014_3171_MOESM1_ESM.doc (428 kb)
Supplementary material 1 (DOC 428 kb)

References

  1. 1.
    Rosskopf D, Busch S, Manthey I, Siffert W (2000) G protein beta 3 gene: structure, promoter, and additional polymorphisms. Hypertension 36(1):33–41CrossRefPubMedGoogle Scholar
  2. 2.
    Bagos PG, Elefsinioti AL, Nikolopoulos GK, Hamodrakas SJ (2007) The GNB3 C825T polymorphism and essential hypertension: a meta-analysis of 34 studies including 14,094 cases and 17,760 controls. J Hypertens 25(3):487–500CrossRefPubMedGoogle Scholar
  3. 3.
    Rosskopf D, Manthey I, Siffert W (2002) Identification and ethnic distribution of major haplotypes in the gene GNB3 encoding the G-protein beta3 subunit. Pharmacogenetics 12(3):209–220CrossRefPubMedGoogle Scholar
  4. 4.
    Angeli CB, Kimura L, Auricchio MT, Vicente JP, Mattevi VS, Zembrzuski VM, Hutz MH, Pereira AC, Pereira TV, Mingroni-Netto RC (2011) Multilocus analyses of seven candidate genes suggest interacting pathways for obesity-related traits in Brazilian populations. Obesity 19(6):1244–1251CrossRefPubMedGoogle Scholar
  5. 5.
    Pereira TV, Mingroni-Netto RC, Yamada Y (2011) ADRB2 and LEPR gene polymorphisms: synergistic effects on the risk of obesity in Japanese. Obesity 19(7):1523–1527CrossRefPubMedGoogle Scholar
  6. 6.
    Bagos PG (2011) Meta-analysis of haplotype-association studies: comparison of methods and empirical evaluation of the literature. BMC Genet 12:8PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Bagos PG, Liakopoulos TD (2010) A multipoint method for meta-analysis of genetic association studies. Genet Epidemiol 34(7):702–715CrossRefPubMedGoogle Scholar
  8. 8.
    Fang YJ, Deng HB, Thomas GN, Tzang CH, Li CX, Xu ZL, Yang M, Tomlinson B (2010) Linkage of angiotensinogen gene polymorphisms with hypertension in a sibling study of Hong Kong Chinese. J Hypertens 28(6):1203–1209PubMedCentralPubMedGoogle Scholar
  9. 9.
    Sandrim VC, Tanus-Santos JE (2007) Haplotype analysis can provide improved clinical information than single genotype analysis. Thromb Res 120(5):779CrossRefPubMedGoogle Scholar
  10. 10.
    Watkins WS, Hunt SC, Williams GH, Tolpinrud W, Jeunemaitre X, Lalouel JM, Jorde LB (2010) Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: the importance of haplotypes. J Hypertens 28(1):65–75PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Pereira TV, Rudnicki M, Cheung BM, Baum L, Yamada Y, Oliveira PS, Pereira AC, Krieger JE (2007) Three endothelial nitric oxide (NOS3) gene polymorphisms in hypertensive and normotensive individuals: meta-analysis of 53 studies reveals evidence of publication bias. J Hypertens 25(9):1763–1774CrossRefPubMedGoogle Scholar
  12. 12.
    Tobin MD, Sheehan NA, Scurrah KJ, Burton PR (2005) Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med 24(19):2911–2935CrossRefPubMedGoogle Scholar
  13. 13.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefPubMedGoogle Scholar
  14. 14.
    Pereira TV, Patsopoulos NA, Pereira AC, Krieger JE (2011) Strategies for genetic model specification in the screening of genome-wide meta-analysis signals for further replication. Int J Epidemiol 40(2):457–469CrossRefPubMedGoogle Scholar
  15. 15.
    Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP (2009) Discovery properties of genome-wide association signals from cumulatively combined data sets. Am J Epidemiol 170(10):1197–1206PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Burkett K, McNeney B, Graham J (2004) A note on inference of trait associations with SNP haplotypes and other attributes in generalized linear models. Hum Hered 57(4):200–206CrossRefPubMedGoogle Scholar
  17. 17.
    Burkett K, Graham J, McNeney B (2006) hapassoc: software for likelihood inference of trait associations with SNP haplotypes and other attributes. J Stat Softw 16:1–19Google Scholar
  18. 18.
    Riley RD (2009) Multivariate meta-analysis: the effect of ignoring within-study correlation. J R Stat Soc 172(4):789–811CrossRefGoogle Scholar
  19. 19.
    White IR (2009) Multivariate random-effects meta-analysis. Stata J 9(1):40–56Google Scholar
  20. 20.
    Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP (2010) Critical interpretation of Cochran’s Q test depends on power and prior assumptions about heterogeneity. Res Synth Methods 1(2):149–161CrossRefPubMedGoogle Scholar
  21. 21.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558CrossRefPubMedGoogle Scholar
  22. 22.
    Han B, Eskin E (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88(5):586–598PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Li B, Ge D, Wang Y, Zhao W, Zhou X, Gu D, Chen R (2005) G protein beta 3 subunit gene variants and essential hypertension in the northern Chinese Han population. Ann Hum Genet 69(Pt 4):468–473CrossRefPubMedGoogle Scholar
  24. 24.
    Suwazono Y, Kobayashi E, Uetani M, Miura K, Morikawa Y, Ishizaki M, Kido T, Nakagawa H, Nogawa K (2006) G-protein beta 3 subunit polymorphism C1429T and low-density lipoprotein receptor-related protein 5 polymorphism A1330V are risk factors for hypercholesterolemia in Japanese males—a prospective study over 5 years. Metabolism 55(6):751–757CrossRefPubMedGoogle Scholar
  25. 25.
    Yamada Y, Kato K, Kameyama T, Yokoi K, Matsuo H, Segawa T, Watanabe S, Ichihara S, Yoshida H, Satoh K, Nozawa Y (2006) Genetic factors for obesity. Int J Mol Med 18(5):843–851PubMedGoogle Scholar
  26. 26.
    Renner W, Hoffmann MM, Grunbacher G, Winkelmann BR, Boehm BO, Marz W (2007) G-protein beta3 subunit (GNB3) gene polymorphisms and cardiovascular disease: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Atherosclerosis 192(1):108–112CrossRefPubMedGoogle Scholar
  27. 27.
    Daimon M, Sato H, Sasaki S, Toriyama S, Emi M, Muramatsu M, Hunt SC, Hopkins PN, Karasawa S, Wada K, Jimbu Y, Kameda W, Susa S, Oizumi T, Fukao A, Kubota I, Kawata S, Kato T (2008) Salt consumption-dependent association of the GNB3 gene polymorphism with type 2 DM. Biochem Biophys Res Commun 374(3):576–580CrossRefPubMedGoogle Scholar
  28. 28.
    Kimura L, Angeli CB, Auricchio MT, Fernandes GR, Pereira AC, Vicente JP, Pereira TV, Mingroni-Netto RC (2012) Multilocus family-based association analysis of seven candidate polymorphisms with essential hypertension in an african-derived semi-isolated Brazilian population. Int J Hypertens 2012:859219PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Dong Y, Zhu H, Wang X, Dalageorgou C, Carter N, Spector TD, Snieder H (2004) Obesity reveals an association between blood pressure and the G-protein beta3-subunit gene: a study of female dizygotic twins. Pharmacogenetics 14(7):419–427CrossRefPubMedGoogle Scholar
  30. 30.
    Suwazono Y, Okubo Y, Kobayashi E, Miura K, Morikawa Y, Ishizaki M, Kido T, Nakagawa H, Nogawa K (2004) Lack of association of human G-protein beta 3 subunit variant with hypertension in Japanese workers. J Hypertens 22(3):493–500CrossRefPubMedGoogle Scholar
  31. 31.
    Yamada Y, Matsuo H, Segawa T, Watanabe S, Kato K, Hibino T, Yokoi K, Ichihara S, Metoki N, Yoshida H, Satoh K, Nozawa Y (2006) Assessment of the genetic component of hypertension. Am J Hypertens 19(11):1158–1165CrossRefPubMedGoogle Scholar
  32. 32.
    Lu J, Guo Q, Zhang L, Wang W (2012) Association between the G-protein beta3 subunit C825T polymorphism with essential hypertension: a meta-analysis in Han Chinese population. Mol Biol Rep 39(9):8937–8944CrossRefPubMedGoogle Scholar
  33. 33.
    Niu W, Qi Y (2011) Association of alpha-adducin and G-protein beta3 genetic polymorphisms with hypertension: a meta-analysis of Chinese populations. PLoS One 6(2):e17052PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Takeuchi F, Yamamoto K, Katsuya T, Sugiyama T, Nabika T, Ohnaka K, Yamaguchi S, Takayanagi R, Ogihara T, Kato N (2012) Reevaluation of the association of seven candidate genes with blood pressure and hypertension: a replication study and meta-analysis with a larger sample size. Hypertens Res 35(8):825–831CrossRefPubMedGoogle Scholar
  35. 35.
    Pereira TV, Nunes AC, Rudnicki M, Yamada Y, Pereira AC, Krieger JE (2008) Meta-analysis of the association of 4 angiotensinogen polymorphisms with essential hypertension: a role beyond M235T? Hypertension 51(3):778–783CrossRefPubMedGoogle Scholar
  36. 36.
    Tanus-Santos JE, Casella-Filho A (2007) Endothelial nitric oxide synthase polymorphisms and susceptibility to hypertension: genotype versus haplotype analysis. Hypertension 49(1):E1CrossRefPubMedGoogle Scholar
  37. 37.
    Guo W, Lin S (2009) Generalized linear modeling with regularization for detecting common disease rare haplotype association. Genet Epidemiol 33(4):308–316PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Fallin D, Schork NJ (2000) Accuracy of haplotype frequency estimation for biallelic loci, via the expectation–maximization algorithm for unphased diploid genotype data. Am J Hum Genet 67(4):947–959PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Ioannidis JP, Trikalinos TA (2007) The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ 176(8):1091–1096PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tiago V. Pereira
    • 1
    • 2
  • Lilian Kimura
    • 2
  • Yasushi Suwazono
    • 3
  • Hideaki Nakagawa
    • 4
  • Makoto Daimon
    • 5
    • 6
    • 7
  • Toshihide Oizumi
    • 5
  • Takamasa Kayama
    • 6
  • Takeo Kato
    • 5
    • 6
  • Liao Li
    • 8
  • Shufeng Chen
    • 9
  • Dongfeng Gu
    • 9
  • Wilfried Renner
    • 10
  • Winfried März
    • 10
    • 11
    • 12
  • Yoshiji Yamada
    • 13
  • Pantelis G. Bagos
    • 14
  • Regina C. Mingroni-Netto
    • 2
  1. 1.Health Technology Assessment Unit, Institute of Education and Health SciencesGerman Hospital Oswaldo CruzSão PauloBrazil
  2. 2.Centro de Estudos do Genoma Humano, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  3. 3.Department of Occupational and Environmental Medicine, Graduate School of MedicineChiba UniversityChibaJapan
  4. 4.Department of Epidemiology and Public HealthKanazawa Medical UniversityUchinadaJapan
  5. 5.Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology (DNHMED)Yamagata University School of MedicineYamagataJapan
  6. 6.Global Center of Excellence Program Study GroupYamagata University School of MedicineYamagataJapan
  7. 7.Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineAomoriJapan
  8. 8.Institute of BiophysicsChinese Academy of SciencesBeijingChina
  9. 9.Prevention, Cardiovascular Institute and Fu Wai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  10. 10.Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University GrazGrazAustria
  11. 11.Medical Clinic V (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty MannheimUniversity of HeidelbergHeidelbergGermany
  12. 12.Synlab AcademySynlab Services GmbHMannheimGermany
  13. 13.Department of Human Functional Genomics, Life Science Research CenterMie UniversityTsuJapan
  14. 14.Department of Computer Science and Biomedical InformaticsUniversity of Central GreeceLamiaGreece

Personalised recommendations