Advertisement

Molecular Biology Reports

, Volume 41, Issue 5, pp 2733–2743 | Cite as

Genetic variants in loci 1p13 and 9p21 and fatal coronary heart disease in a Norwegian case-cohort study

  • Mona Dverdal JansenEmail author
  • Gun Peggy Knudsen
  • Ronny Myhre
  • Gudrun Høiseth
  • Jørg Mørland
  • Øyvind Næss
  • Kristian Tambs
  • Per Magnus
Article

Abstract

Single nucleotide polymorphisms (SNPs) in loci 1p13 and 9p21 have previously been found to be associated with incident coronary heart disease (CHD). This study aimed to investigate whether these SNPs show associations with fatal CHD in a population-based cohort study after adjustment for socioeconomic- and lifestyle-related CHD risk factors not commonly included in genetic association studies. Using the population-based Cohort of Norway (CONOR), a nested case-cohort study was set up and DNA from 2,953 subjects (829 cases and 2,124 non-cases) were genotyped. The association with fatal CHD was estimated for four SNPs, three from locus 1p13 and one from locus 9p21. Multivariable Cox regression was used to estimate unstratified and gender-stratified hazard ratios while adjusting for major CHD risk factors. The associations between three SNPs from locus 1p13 and non-HDL cholesterol levels were also estimated. Men homozygous for the risk alleles on rs1333049 (9p21) and rs14000 (1p13) were found to have significantly increased hazard ratios in crude and adjusted models, and the hazard ratios remained statistically significant when both genders were analyzed together. Adjustment for additional socioeconomic- and lifestyle-related CHD risk factors influenced the association estimates only slightly. No significant associations were observed between the other two SNPs in loci 1p13 (rs599839 and rs646776) and CHD mortality in either gender. Both rs599839 and rs646776 showed significant, gradual increases in non-HDL cholesterol levels with increasing number of risk alleles. This study confirms the association between 9p21 (rs1333049) and fatal CHD in a Norwegian population-based cohort. The effect was not influenced by several socioeconomic- and lifestyle-related risk factors. Our results show that 1p13 (rs14000) may also be associated with fatal CHD. SNPs at 1p13 (rs599839 and rs646776) were associated with non-HDL cholesterol levels.

Keywords

1p13 9p21 CHD Case-cohort CONOR 

Notes

Acknowledgements

The authors wish to acknowledge the services of CONOR, the contributing research centres delivering data to CONOR, and all the study participants. This work was funded by Norwegian Research Council grant 196578/V50. We thank Sven Ove Samuelsen of the University of Oslo and The Norwegian Institute of Public Health for assistance with the sampling weights.

Conflicts of interest

The authors declare that they have no competing interests.

Supplementary material

11033_2014_3096_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 kb)

References

  1. 1.
    Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493CrossRefPubMedGoogle Scholar
  2. 2.
    Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H et al (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–341CrossRefPubMedGoogle Scholar
  3. 3.
    McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316:1488–1491PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE et al (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357:443–453PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    The Coronary Artery Disease (C4D) Genetics Consortium (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 43:339–344CrossRefGoogle Scholar
  6. 6.
    The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678PubMedCentralCrossRefGoogle Scholar
  7. 7.
    Angelakopoulou A, Shah T, Sofat R, Shah S, Berry DJ, Cooper J, Palmen J, Tzoulaki I, Wong A, Jefferis BJ et al (2012) Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: Cardiovascular Biomarker Genetics Collaboration. Eur Heart J 33:393–407PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Buysschaert I, Carruthers KF, Dunbar DR, Peuteman G, Rietzschel E, Belmans A, Hedley A, De Meyer T, Budaj A, Van de Werf F et al (2010) A variant at chromosome 9p21 is associated with recurrent myocardial infarction and cardiac death after acute coronary syndrome: the GRACE Genetics Study. Eur Heart J 31:1132–1141PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Koch W, Turk S, Erl A, Hoppmann P, Pfeufer A, King L, Schomig A, Kastrati A (2011) The chromosome 9p21 region and myocardial infarction in a European population. Atherosclerosis 217:220–226CrossRefPubMedGoogle Scholar
  10. 10.
    O’Donnell CJ, Kavousi M, Smith AV, Kardia SL, Feitosa MF, Hwang SJ, Sun YV, Province MA, Aspelund T, Dehghan A et al (2011) Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation 124:2855–2864PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Palomaki GE, Melillo S, Bradley LA (2010) Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA 303:648–656CrossRefPubMedGoogle Scholar
  12. 12.
    Preuss M, Konig IR, Thompson JR, Erdmann J, Absher D, Assimes TL, Blankenberg S, Boerwinkle E, Chen L, Cupples LA et al (2010) Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study: a genome-wide association meta-analysis involving more than 22 000 cases and 60 000 controls. Circ Cardiovasc Genet 3:475–483PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Scheffold T, Kullmann S, Huge A, Binner P, Ochs HR, Schols W, Thale J, Motz W, Hegge FJ, Stellbrink C et al (2011) Six sequence variants on chromosome 9p21.3 are associated with a positive family history of myocardial infarction: a multicenter registry. BMC Cardiovasc Disord 11:9PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Schunkert H, Gotz A, Braund P, McGinnis R, Tregouet DA, Mangino M, Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K et al (2008) Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation 117:1675–1684PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333–338PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Wild PS, Zeller T, Schillert A, Szymczak S, Sinning CR, Deiseroth A, Schnabel RB, Lubos E, Keller T, Eleftheriadis MS et al (2011) A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease. Circulation Cardiovascular Genetics 4:403–412PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Patel RS, Ye S (2011) Genetic determinants of coronary heart disease: new discoveries and insights from genome-wide association studies. Heart 97:1463–1473CrossRefPubMedGoogle Scholar
  18. 18.
    Plichart M, Empana JP, Lambert JC, Amouyel P, Tiret L, Letenneur L, Berr C, Tzourio C, Ducimetiere P (2012) Single polymorphism nucleotide rs1333049 on chromosome 9p21 is associated with carotid plaques but not with common carotid intima-media thickness in older adults. A combined analysis of the three-city and the EVA studies. Atherosclerosis 222:187–190CrossRefPubMedGoogle Scholar
  19. 19.
    Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM et al (2010) From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466:714–719PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH, Song K, Yuan X, Johnson T, Ashford S et al (2008) LDL-cholesterol concentrations: a genome-wide association study. Lancet 371:483–491PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Wang AZ, Li L, Zhang B, Shen GQ, Wang QK (2011) Association of SNP rs17465637 on chromosome 1q41 and rs599839 on 1p13.3 with myocardial infarction in an American caucasian population. Ann Hum Genet 75:475–482PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Bressler J, Folsom AR, Couper DJ, Volcik KA, Boerwinkle E (2010) Genetic variants identified in a European genome-wide association study that were found to predict incident coronary heart disease in the atherosclerosis risk in communities study. Am J Epidemiol 171:14–23PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Coughlin SS (2010) Invited commentary: genetic variants and individual- and societal-level risk factors. Am J Epidemiol 171:24–26CrossRefPubMedGoogle Scholar
  24. 24.
    Naess O, Sogaard AJ, Arnesen E, Beckstrom AC, Bjertness E, Engeland A, Hjort PF, Holmen J, Magnus P, Njolstad I et al (2008) Cohort profile: cohort of Norway (CONOR). Int J Epidemiol 37:481–485PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Folkehelseinstituttet (2013) CONOR—data from several regional health studies http://www.fhi.no/eway/default.aspx?pid=240&trg=Main_6664&Main_6664=6898:0:25,7785:1:0:0:::0:0. Accessed 8 Feb 2013
  26. 26.
    Purcell S (2009) PLINK v1.07. http://pngu.mgh.harvard.edu/~purcell/plink/. Accessed 8 Feb 2013
  27. 27.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Karvanen J, Silander K, Kee F, Tiret L, Salomaa V, Kuulasmaa K, Wiklund PG, Virtamo J, Saarela O, Perret C et al (2009) The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genet Epidemiol 33:237–246PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Muendlein A, Geller-Rhomberg S, Saely CH, Winder T, Sonderegger G, Rein P, Beer S, Vonbank A, Drexel H (2009) Significant impact of chromosomal locus 1p13.3 on serum LDL cholesterol and on angiographically characterized coronary atherosclerosis. Atherosclerosis 206:494–499CrossRefPubMedGoogle Scholar
  30. 30.
    Vaarhorst AA, Lu Y, Heijmans BT, Dolle ME, Bohringer S, Putter H, Imholz S, Merry AH, van Greevenbroek MM, Jukema JW et al (2012) Literature-based genetic risk scores for coronary heart disease: the Cardiovascular Registry Maastricht (CAREMA) prospective cohort study. Circ Cardiovasc Genet 5:202–209CrossRefPubMedGoogle Scholar
  31. 31.
    Ellis KL, Frampton CM, Pilbrow AP, Troughton RW, Doughty RN, Whalley GA, Ellis CJ, Skelton L, Thomson J, Yandle TG et al (2011) Genomic risk variants at 1p13.3, 1q41, and 3q22.3 are associated with subsequent cardiovascular outcomes in healthy controls and in established coronary artery disease. Circ Cardiovasc Genet 4:636–646CrossRefPubMedGoogle Scholar
  32. 32.
    Samani NJ, Braund PS, Erdmann J, Gotz A, Tomaszewski M, Linsel-Nitschke P, Hajat C, Mangino M, Hengstenberg C, Stark K et al (2008) The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. J Mol Med 86:1233–1241CrossRefPubMedGoogle Scholar
  33. 33.
    Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, Ahmadi K, Dobson RJ, Marcano AC, Hajat C et al (2008) Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 82:139–149PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson NJ, Najjar SS, Stringham HM et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40:161–169CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mona Dverdal Jansen
    • 1
    Email author
  • Gun Peggy Knudsen
    • 2
  • Ronny Myhre
    • 1
  • Gudrun Høiseth
    • 3
    • 4
  • Jørg Mørland
    • 3
  • Øyvind Næss
    • 1
  • Kristian Tambs
    • 2
  • Per Magnus
    • 1
  1. 1.Division of EpidemiologyNorwegian Institute of Public HealthOsloNorway
  2. 2.Division of Mental HealthNorwegian Institute of Public HealthOsloNorway
  3. 3.Division of Forensic Medicine and Drug Abuse ResearchNorwegian Institute of Public HealthOsloNorway
  4. 4.Center for PsychopharmacologyDiakonhjemmet HospitalOsloNorway

Personalised recommendations