Advertisement

Molecular Biology Reports

, Volume 41, Issue 4, pp 1985–1992 | Cite as

Grb10 is a dual regulator of receptor tyrosine kinase signaling

  • Nuzhat N. Kabir
  • Julhash U. Kazi
Article

Abstract

The adaptor protein Grb10 is a close homolog of Grb7 and Grb14. These proteins are characterized by an N-terminal proline-rich region, a Ras–GTPase binding domain, a PH domain, an SH2 domain and a BPS domain in between the PH and SH2 domains. Human Grb10 gene encodes three splice variants. These variants show differences in functionality. Grb10 associates with multiple proteins including tyrosine kinases in a tyrosine phosphorylation dependent or independent manner. Association with multiple proteins allows Grb10 to regulate different signaling pathways resulting in different biological consequences.

Keywords

InsR IGF-1R FLT3 KIT PDGFR VEGFR RTK Adaptor 

Notes

Acknowledgments

We thank Professor Lars Rönnstrand for comments on manuscript. This research was funded by the Stiftelsen Olle Engkvist Byggmästare, Kungliga Fysiografiska Sällskapet i Lund, Ollie Elof Ericssons Stiftelse and Stiftelsen Lars Hiertas Minne.

Conflict of interests

Authors declares no conflicts of interest.

References

  1. 1.
    Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD (2011) The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 4(202):ra83. doi: 10.1126/scisignal.2002105 PubMedCrossRefGoogle Scholar
  2. 2.
    Daly RJ (1998) The Grb7 family of signalling proteins. Cell Signal 10(9):613–618PubMedCrossRefGoogle Scholar
  3. 3.
    Liu F, Roth RA (1995) Grb-IR: a SH2-domain-containing protein that binds to the insulin receptor and inhibits its function. Proc Natl Acad Sci USA 92(22):10287–10291PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ooi J, Yajnik V, Immanuel D, Gordon M, Moskow JJ, Buchberg AM, Margolis B (1995) The cloning of Grb10 reveals a new family of SH2 domain proteins. Oncogene 10(8):1621–1630PubMedGoogle Scholar
  5. 5.
    Hansen H, Svensson U, Zhu J, Laviola L, Giorgino F, Wolf G, Smith RJ, Riedel H (1996) Interaction between the Grb10 SH2 domain and the insulin receptor carboxyl terminus. J Biol Chem 271(15):8882–8886PubMedCrossRefGoogle Scholar
  6. 6.
    Laviola L, Giorgino F, Chow JC, Baquero JA, Hansen H, Ooi J, Zhu J, Riedel H, Smith RJ (1997) The adapter protein Grb10 associates preferentially with the insulin receptor as compared with the IGF-I receptor in mouse fibroblasts. J Clin Investig 99(5):830–837. doi: 10.1172/JCI119246 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    He W, Rose DW, Olefsky JM, Gustafson TA (1998) Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the Grb10 Src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J Biol Chem 273(12):6860–6867PubMedCrossRefGoogle Scholar
  8. 8.
    Charalambous M, Smith FM, Bennett WR, Crew TE, Mackenzie F, Ward A (2003) Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Proc Natl Acad Sci USA 100(14):8292–8297. doi: 10.1073/pnas.1532175100 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    O’Neill TJ, Rose DW, Pillay TS, Hotta K, Olefsky JM, Gustafson TA (1996) Interaction of a GRB-IR splice variant (a human GRB10 homolog) with the insulin and insulin-like growth factor I receptors. Evidence for a role in mitogenic signaling. J Biol Chem 271(37):22506–22513PubMedCrossRefGoogle Scholar
  10. 10.
    Frantz JD, Giorgetti-Peraldi S, Ottinger EA, Shoelson SE (1997) Human GRB-IRbeta/GRB10. Splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains. J Biol Chem 272(5):2659–2667PubMedCrossRefGoogle Scholar
  11. 11.
    Dong LQ, Du H, Porter SG, Kolakowski LF Jr, Lee AV, Mandarino LJ, Fan J, Yee D, Liu F (1997) Cloning, chromosome localization, expression, and characterization of an Src homology 2 and pleckstrin homology domain-containing insulin receptor binding protein hGrb10gamma. J Biol Chem 272(46):29104–29112PubMedCrossRefGoogle Scholar
  12. 12.
    Okino K, Konishi H, Doi D, Yoneyama K, Ota Y, Jin E, Kawanami O, Takeshita T (2005) Up-regulation of growth factor receptor-bound protein 10 in cervical squamous cell carcinoma. Oncol Rep 13(6):1069–1074PubMedGoogle Scholar
  13. 13.
    Dey BR, Frick K, Lopaczynski W, Nissley SP, Furlanetto RW (1996) Evidence for the direct interaction of the insulin-like growth factor I receptor with IRS-1, Shc, and Grb10. Mol Endocrinol 10(6):631–641PubMedGoogle Scholar
  14. 14.
    Morrione A, Valentinis B, Li S, Ooi JY, Margolis B, Baserga R (1996) Grb10: a new substrate of the insulin-like growth factor I receptor. Cancer Res 56(14):3165–3167PubMedGoogle Scholar
  15. 15.
    Deng Y, Zhang M, Riedel H (2008) Mitogenic roles of Gab1 and Grb10 as direct cellular partners in the regulation of MAP kinase signaling. J Cell Biochem 105(5):1172–1182. doi: 10.1002/jcb.21829 PubMedCrossRefGoogle Scholar
  16. 16.
    Morrione A, Valentinis B, Resnicoff M, Xu S, Baserga R (1997) The role of mGrb10alpha in insulin-like growth factor I-mediated growth. J Biol Chem 272(42):26382–26387PubMedCrossRefGoogle Scholar
  17. 17.
    Langlais P, Dong LQ, Hu D, Liu F (2000) Identification of Grb10 as a direct substrate for members of the Src tyrosine kinase family. Oncogene 19(25):2895–2903. doi: 10.1038/sj.onc.1203616 PubMedCrossRefGoogle Scholar
  18. 18.
    Stein EG, Gustafson TA, Hubbard SR (2001) The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF1 receptors. FEBS Lett 493(2–3):106–111PubMedCrossRefGoogle Scholar
  19. 19.
    Deng Y, Bhattacharya S, Swamy OR, Tandon R, Wang Y, Janda R, Riedel H (2003) Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action. J Biol Chem 278(41):39311–39322. doi: 10.1074/jbc.M304599200 PubMedCrossRefGoogle Scholar
  20. 20.
    Giovannone B, Lee E, Laviola L, Giorgino F, Cleveland KA, Smith RJ (2003) Two novel proteins that are linked to insulin-like growth factor (IGF-I) receptors by the Grb10 adapter and modulate IGF-I signaling. J Biol Chem 278(34):31564–31573. doi: 10.1074/jbc.M211572200 PubMedCrossRefGoogle Scholar
  21. 21.
    Stein EG, Ghirlando R, Hubbard SR (2003) Structural basis for dimerization of the Grb10 Src homology 2 domain. Implications for ligand specificity. J Biol Chem 278(15):13257–13264. doi: 10.1074/jbc.M212026200 PubMedCrossRefGoogle Scholar
  22. 22.
    Morrione A, Plant P, Valentinis B, Staub O, Kumar S, Rotin D, Baserga R (1999) mGrb10 interacts with Nedd4. J Biol Chem 274(34):24094–24099PubMedCrossRefGoogle Scholar
  23. 23.
    Vecchione A, Marchese A, Henry P, Rotin D, Morrione A (2003) The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol 23(9):3363–3372PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Wick KR, Werner ED, Langlais P, Ramos FJ, Dong LQ, Shoelson SE, Liu F (2003) Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of IRS-1/IRS-2 with the insulin receptor. J Biol Chem 278(10):8460–8467. doi: 10.1074/jbc.M208518200 PubMedCrossRefGoogle Scholar
  25. 25.
    Langlais P, Dong LQ, Ramos FJ, Hu D, Li Y, Quon MJ, Liu F (2004) Negative regulation of insulin-stimulated mitogen-activated protein kinase signaling by Grb10. Mol Endocrinol 18(2):350–358. doi: 10.1210/me.2003-0117 PubMedCrossRefGoogle Scholar
  26. 26.
    Dufresne AM, Smith RJ (2005) The adapter protein GRB10 is an endogenous negative regulator of insulin-like growth factor signaling. Endocrinology 146(10):4399–4409. doi: 10.1210/en.2005-0150 PubMedCrossRefGoogle Scholar
  27. 27.
    Langlais P, Wang C, Dong LQ, Carroll CA, Weintraub ST, Liu F (2005) Phosphorylation of Grb10 by mitogen-activated protein kinase: identification of Ser150 and Ser476 of human Grb10zeta as major phosphorylation sites. Biochemistry 44(24):8890–8897. doi: 10.1021/bi050413i PubMedCrossRefGoogle Scholar
  28. 28.
    Cariou B, Perdereau D, Cailliau K, Browaeys-Poly E, Bereziat V, Vasseur-Cognet M, Girard J, Burnol AF (2002) The adapter protein ZIP binds Grb14 and regulates its inhibitory action on insulin signaling by recruiting protein kinase Czeta. Mol Cell Biol 22(20):6959–6970PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kazi JU, Soh JW (2007) Isoform-specific translocation of PKC isoforms in NIH3T3 cells by TPA. Biochem Biophys Res Commun 364(2):231–237. doi: 10.1016/j.bbrc.2007.09.123 PubMedCrossRefGoogle Scholar
  30. 30.
    Kazi JU, Soh JW (2008) Induction of the nuclear proto-oncogene c-fos by the phorbol ester TPA and v-H-Ras. Mol Cells 26(5):462–467PubMedGoogle Scholar
  31. 31.
    Kabir NN, Kazi JU (2013) Selective mutation in ATP-binding site reduces affinity of drug to the kinase: a possible mechanism of chemo-resistance. Med Oncol 30(1):448. doi: 10.1007/s12032-012-0448-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Kabir NN, Ronnstrand L, Kazi JU (2013) Protein kinase C expression is deregulated in chronic lymphocytic leukemia. Leuk Lymphoma 54(10):2288–2290. doi: 10.3109/10428194.2013.769220 PubMedCrossRefGoogle Scholar
  33. 33.
    Kazi JU, Kabir NN, Ronnstrand L (2013) Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Med Oncol 30(4):757. doi: 10.1007/s12032-013-0757-7 PubMedCrossRefGoogle Scholar
  34. 34.
    Kazi JU, Soh JW (2008) Role of regulatory domain mutants of PKC isoforms in c-fos induction. Bull Korean Chem Soc 29(1):252–254CrossRefGoogle Scholar
  35. 35.
    Kazi JU, Kim CR, Soh JW (2009) Subcellular localization of diacylglycerol-responsive protein kinase C isoforms in HeLa cells. Bull Korean Chem Soc 30(9):1981–1984CrossRefGoogle Scholar
  36. 36.
    Kazi JU (2011) The mechanism of protein kinase C regulation. Frontiers Biol 6(4):328–336. doi: 10.1007/s11515-011-1070-5 Google Scholar
  37. 37.
    Mori K, Giovannone B, Smith RJ (2005) Distinct Grb10 domain requirements for effects on glucose uptake and insulin signaling. Mol Cell Endocrinol 230(1–2):39–50. doi: 10.1016/j.mce.2004.11.004 PubMedCrossRefGoogle Scholar
  38. 38.
    Ramos FJ, Langlais PR, Hu D, Dong LQ, Liu F (2006) Grb10 mediates insulin-stimulated degradation of the insulin receptor: a mechanism of negative regulation. Am J Physiol Endocrinol Metab 290(6):E1262–E1266. doi: 10.1152/ajpendo.00609.2005 PubMedCrossRefGoogle Scholar
  39. 39.
    Monami G, Emiliozzi V, Morrione A (2008) Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J Cell Physiol 216(2):426–437. doi: 10.1002/jcp.21405 PubMedCrossRefGoogle Scholar
  40. 40.
    Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326. doi: 10.1126/science.1199484 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322. doi: 10.1126/science.1199498 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Li L, Li X, Zhu Y, Zhang M, Yin D, Lu J, Liu F, Wang C, Jia W (2013) Grb10 Inhibits glucose-stimulated insulin release from pancreatic beta-cells associated with suppression of insulin/IGF-1 signaling pathway. Clin Exp Pharmacol Physiol. doi: 10.1111/1440-1681.12160 PubMedCentralGoogle Scholar
  43. 43.
    Kabir NN, Ronnstrand L, Kazi JU (2013) FLT3 mutations in patients with childhood acute lymphoblastic leukemia (ALL). Med Oncol 30(1):462. doi: 10.1007/s12032-013-0462-6 PubMedCrossRefGoogle Scholar
  44. 44.
    Lennartsson J, Ronnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92(4):1619–1649. doi: 10.1152/physrev.0 0046.2011PubMedCrossRefGoogle Scholar
  45. 45.
    Kazi JU, Ronnstrand L (2012) Src-Like adaptor protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling. PLoS ONE 7(12):e53509. doi: 10.1371/journal.pone.0053509 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Kazi JU, Sun J, Phung B, Zadjali F, Flores-Morales A, Ronnstrand L (2012) Suppressor of cytokine signaling 6 (SOCS6) negatively regulates Flt3 signal transduction through direct binding to phosphorylated tyrosines 591 and 919 of Flt3. J Biol Chem 287(43):36509–36517. doi: 10.1074/jbc.M112.376111 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Lin DC, Yin T, Koren-Michowitz M, Ding LW, Gueller S, Gery S, Tabayashi T, Bergholz U, Kazi JU, Ronnstrand L, Stocking C, Koeffler HP (2012) Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3. Blood 120(16):3310–3317. doi: 10.1182/blood-2011-10-388611 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Kazi JU, Agarwal S, Sun J, Bracco E, Ronnstrand L (2013) Src-Like Adaptor Protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. J Cell Sci. doi: 10.1242/jcs.140590 PubMedGoogle Scholar
  49. 49.
    Kazi JU, Ronnstrand L (2013) Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Mol Oncol 7(3):693–703. doi: 10.1016/j.molonc.2013.02.020 PubMedCrossRefGoogle Scholar
  50. 50.
    Kazi JU, Vaapil M, Agarwal S, Bracco E, Pahlman S, Ronnstrand L (2013) The tyrosine kinase CSK associates with FLT3 and c-Kit receptors and regulates downstream signaling. Cell Signal 25(9):1852–1860. doi: 10.1016/j.cellsig.2013.05.016 PubMedCrossRefGoogle Scholar
  51. 51.
    Wang J, Dai H, Yousaf N, Moussaif M, Deng Y, Boufelliga A, Swamy OR, Leone ME, Riedel H (1999) Grb10, a positive, stimulatory signaling adapter in platelet-derived growth factor BB-, insulin-like growth factor I-, and insulin-mediated mitogenesis. Mol Cell Biol 19(9):6217–6228PubMedCentralPubMedGoogle Scholar
  52. 52.
    Jahn T, Seipel P, Urschel S, Peschel C, Duyster J (2002) Role for the adaptor protein Grb10 in the activation of Akt. Mol Cell Biol 22(4):979–991PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Kazi JU, Ronnstrand L (2013) FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Mol Oncol 7(3):402–418. doi: 10.1016/j.molonc.2012.11.003 PubMedCrossRefGoogle Scholar
  54. 54.
    Giorgetti-Peraldi S, Murdaca J, Mas JC, Van Obberghen E (2001) The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling. Oncogene 20(30):3959–3968. doi: 10.1038/sj.onc.1204520 PubMedCrossRefGoogle Scholar
  55. 55.
    Murdaca J, Treins C, Monthouel-Kartmann MN, Pontier-Bres R, Kumar S, Van Obberghen E, Giorgetti-Peraldi S (2004) Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem 279(25):26754–26761. doi: 10.1074/jbc.M311802200 PubMedCrossRefGoogle Scholar
  56. 56.
    Kabir NN, Kazi JU (2011) Comparative analysis of human and bovine protein kinases reveals unique relationship and functional diversity. Genet Mol Biol 34(4):587–591. doi: 10.1590/S1415-47572011005000035 PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Kazi JU, Kabir NN, Soh JW (2008) Bioinformatic prediction and analysis of eukaryotic protein kinases in the rat genome. Gene 410(1):147–153. doi: 10.1016/j.gene.2007.12.003 PubMedCrossRefGoogle Scholar
  58. 58.
    Pandey A, Duan H, Di Fiore PP, Dixit VM (1995) The Ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10. J Biol Chem 270(37):21461–21463PubMedCrossRefGoogle Scholar
  59. 59.
    Stein E, Cerretti DP, Daniel TO (1996) Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells. J Biol Chem 271(38):23588–23593PubMedCrossRefGoogle Scholar
  60. 60.
    Urschel S, Bassermann F, Bai RY, Munch S, Peschel C, Duyster J (2005) Phosphorylation of grb10 regulates its interaction with 14-3-3. J Biol Chem 280(17):16987–16993. doi: 10.1074/jbc.M501477200 PubMedCrossRefGoogle Scholar
  61. 61.
    Kebache S, Ash J, Annis MG, Hagan J, Huber M, Hassard J, Stewart CL, Whiteway M, Nantel A (2007) Grb10 and active Raf-1 kinase promote Bad-dependent cell survival. J Biol Chem 282(30):21873–21883. doi: 10.1074/jbc.M611066200 PubMedCrossRefGoogle Scholar
  62. 62.
    Nantel A, Mohammad-Ali K, Sherk J, Posner BI, Thomas DY (1998) Interaction of the Grb10 adapter protein with the Raf1 and MEK1 kinases. J Biol Chem 273(17):10475–10484PubMedCrossRefGoogle Scholar
  63. 63.
    Bai RY, Jahn T, Schrem S, Munzert G, Weidner KM, Wang JY, Duyster J (1998) The SH2-containing adapter protein GRB10 interacts with BCR-ABL. Oncogene 17(8):941–948. doi: 10.1038/sj.onc.1202024 PubMedCrossRefGoogle Scholar
  64. 64.
    Mano H, Ohya K, Miyazato A, Yamashita Y, Ogawa W, Inazawa J, Ikeda U, Shimada K, Hatake K, Kasuga M, Ozawa K, Kajigaya S (1998) Grb10/GrbIR as an in vivo substrate of Tec tyrosine kinase. Genes Cells 3(7):431–441PubMedCrossRefGoogle Scholar
  65. 65.
    Nantel A, Huber M, Thomas DY (1999) Localization of endogenous Grb10 to the mitochondria and its interaction with the mitochondrial-associated Raf-1 pool. J Biol Chem 274(50):35719–35724PubMedCrossRefGoogle Scholar
  66. 66.
    Shiura H, Miyoshi N, Konishi A, Wakisaka-Saito N, Suzuki R, Muguruma K, Kohda T, Wakana S, Yokoyama M, Ishino F, Kaneko-Ishino T (2005) Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades. Biochem Biophys Res Commun 329(3):909–916. doi: 10.1016/j.bbrc.2005.02.047 PubMedCrossRefGoogle Scholar
  67. 67.
    Wang L, Balas B, Christ-Roberts CY, Kim RY, Ramos FJ, Kikani CK, Li C, Deng C, Reyna S, Musi N, Dong LQ, DeFronzo RA, Liu F (2007) Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol Cell Biol 27(18):6497–6505. doi: 10.1128/MCB.00679-07 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Holt LJ, Lyons RJ, Ryan AS, Beale SM, Ward A, Cooney GJ, Daly RJ (2009) Dual ablation of Grb10 and Grb14 in mice reveals their combined role in regulation of insulin signaling and glucose homeostasis. Mol Endocrinol 23(9):1406–1414. doi: 10.1210/me.2008-0386 PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Holt LJ, Turner N, Mokbel N, Trefely S, Kanzleiter T, Kaplan W, Ormandy CJ, Daly RJ, Cooney GJ (2012) Grb10 regulates the development of fiber number in skeletal muscle. FASEB journal 26(9):3658–3669. doi: 10.1096/fj.11-199349 PubMedCrossRefGoogle Scholar
  70. 70.
    Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J (1998) Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. J Biol Chem 273(26):15906–15912PubMedCrossRefGoogle Scholar
  71. 71.
    Wick MJ, Dong LQ, Hu D, Langlais P, Liu F (2001) Insulin receptor-mediated p62dok tyrosine phosphorylation at residues 362 and 398 plays distinct roles for binding GTPase-activating protein and Nck and is essential for inhibiting insulin-stimulated activation of Ras and Akt. J Biol Chem 276(46):42843–42850. doi: 10.1074/jbc.M102116200 PubMedCrossRefGoogle Scholar
  72. 72.
    Tezuka N, Brown AM, Yanagawa S (2007) GRB10 binds to LRP6, the Wnt co-receptor and inhibits canonical Wnt signaling pathway. Biochem Biophys Res Commun 356(3):648–654. doi: 10.1016/j.bbrc.2007.03.019 PubMedCrossRefGoogle Scholar
  73. 73.
    Hu ZQ, Zhang JY, Ji CN, Xie Y, Chen JZ, Mao YM (2010) Grb10 interacts with Bim L and inhibits apoptosis. Mol Biol Rep 37(7):3547–3552. doi: 10.1007/s11033-010-0002-9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratory of Computational BiochemistryKN Biomedical Research InstituteBarisalBangladesh
  2. 2.Translational Cancer Research, Department of Laboratory MedicineLund UniversityLundSweden
  3. 3.Lund Stem Cell Center, Department of Laboratory MedicineLund UniversityLundSweden

Personalised recommendations