Molecular Biology Reports

, Volume 41, Issue 4, pp 1977–1984

MiR-200a is involved in proliferation and apoptosis in the human endometrial adenocarcinoma cell line HEC-1B by targeting the tumor suppressor PTEN

  • Rong Li
  • Jun-lin He
  • Xue-mei Chen
  • Chun-Lan Long
  • De-Hui Yang
  • Yu-Bin Ding
  • Hong-Bo Qi
  • Xue-Qing Liu


Abnormal cell proliferation is a main driver of tumor formation and development, which involves the deletion, mutation, and downregulation of tumor suppressor genes. One study recently demonstrated that miR-200a plays an oncogenic role by inhibiting phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression. In the human endometrial adenocarcinoma cell line HEC-1B, suppression of miR-200a expression inhibited cell proliferation and promoted apoptosis, whereas its over-expression had no effect on proliferation and apoptosis. Furthermore, inhibition or over-expression of miR-200a increased or reduced the expression of PTEN, respectively, with no change in PTEN mRNA levels. These effects were achieved by directly targeting miR-200a to the 3′ untranslated region of the PTEN mRNA to inhibit its translation. Taken together, we propose that in HEC-1B cells, miR-200a functions as an oncogene, affecting proliferation and apoptosis by regulating the expression of the tumor suppressor PTEN at the translational level.


HEC-1B miR-200a PTEN Proliferation Apoptosis 


  1. 1.
    Ray M, Fleming G (2009) Management of advanced-stage and recurrent endometrial cancer. Semin Oncol 36:145–154PubMedCrossRefGoogle Scholar
  2. 2.
    Okuda T, Sekizawa A, Purwosunu Y, Nagatsuka M, Morioka M, Hayashi M, Okai T (2010) Genetics of endometrial cancers. Obstet Gynecol Int 2010:984013PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedCrossRefGoogle Scholar
  4. 4.
    Lee DY, Jeyapalan Z, Fang L, Yang J, Zhang Y, Yee AY, Li M, Du WW, Shatseva T, Yang BB (2010) Expression of versican 3′-untranslated region modulates endogenous microRNA functions. PLoS One 5:e13599PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123:1133–1146PubMedCrossRefGoogle Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  7. 7.
    Tricoli JV, Jacobson JW (2007) MicroRNA: potential for cancer detection, diagnosis, and prognosis. Cancer Res 67:4553–4555PubMedCrossRefGoogle Scholar
  8. 8.
    Negrini M, Ferracin M, Sabbioni S, Croce CM (2007) MicroRNAs in human cancer: from research to therapy. J Cell Sci 120:1833–1840PubMedCrossRefGoogle Scholar
  9. 9.
    Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, Ghoshal K (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99:671–678PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468PubMedCrossRefGoogle Scholar
  11. 11.
    Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7PubMedCrossRefGoogle Scholar
  12. 12.
    Wu X, Zhao B, Li W, Chen Y, Liang R, Li L, Jin Y, Ruan K (2012) MiR-200a is involved in rat epididymal development by targeting beta-catenin mRNA. Acta Biochim Biophys Sin (Shanghai) 44:233–240CrossRefGoogle Scholar
  13. 13.
    Soubani O, Ali AS, Logna F, Ali S, Philip PA, Sarkar FH (2013) Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33:1563–1571CrossRefGoogle Scholar
  14. 14.
    Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau X, Mechta-Grigoriou F (2011) miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 17:1627–1635PubMedCrossRefGoogle Scholar
  15. 15.
    Eades G, Yang M, Yao Y, Zhang Y, Zhou Q (2011) miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 286:40725–40733PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M, Borges M, Goggins M (2010) Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 70:5226–5237PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Pan Q, Chegini N (2008) MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin Reprod Med 26:479–493PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EW (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70:367–377PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Lee JW, Park YA, Choi JJ, Lee YY, Kim CJ, Choi C, Kim TJ, Lee NW, Kim BG, Bae DS (2011) The expression of the miRNA-200 family in endometrial endometrioid carcinoma. Gynecol Oncol 120:56–62PubMedCrossRefGoogle Scholar
  20. 20.
    Hiroki E, Akahira J, Suzuki F, Nagase S, Ito K, Suzuki T, Sasano H, Yaegashi N (2010) Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci 101:241–249PubMedCrossRefGoogle Scholar
  21. 21.
    Torres A, Torres K, Pesci A, Ceccaroni M, Paszkowski T, Cassandrini P, Zamboni G, Maciejewski R (2013) Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int J Cancer 132:1633–1645PubMedCrossRefGoogle Scholar
  22. 22.
    Qian K, Chen H, Wei Y, Hu J, Zhu G (2005) Differentiation of endometrial stromal cells in vitro: down-regulation of suppression of the cell cycle inhibitor p57 by HOXA10? Mol Hum Reprod 11:245–251PubMedCrossRefGoogle Scholar
  23. 23.
    Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32:e43PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35:D149–D155PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  26. 26.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500PubMedCrossRefGoogle Scholar
  27. 27.
    Osborne C, Wilson P, Tripathy D (2004) Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist 9:361–377PubMedCrossRefGoogle Scholar
  28. 28.
    Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511PubMedCrossRefGoogle Scholar
  29. 29.
    Leslie NR, Foti M (2011) Non-genomic loss of PTEN function in cancer: not in my genes. Trends Pharmacol Sci 32:131–140PubMedCrossRefGoogle Scholar
  30. 30.
    Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM (2008) MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA 105:19300–19305PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Zbuk KM, Eng C (2007) Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer 7:35–45PubMedCrossRefGoogle Scholar
  32. 32.
    Yan X, Fraser M, Qiu Q, Tsang BK (2006) Over-expression of PTEN sensitizes human ovarian cancer cells to cisplatin-induced apoptosis in a p53-dependent manner. Gynecol Oncol 102:348–355PubMedCrossRefGoogle Scholar
  33. 33.
    Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z, Wang J, Erdjument-Bromage H, Tempst P, Cordon-Cardo C, Pandolfi PP, Jiang X (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128:129–139PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H, Pavletich NP, Carver BS, Cordon-Cardo C, Erdjument-Bromage H, Tempst P, Chi SG, Kim HJ, Misteli T, Jiang X, Pandolfi PP (2007) Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128:141–156PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Schondorf T, Ebert MP, Hoffmann J, Becker M, Moser N, Pur S, Gohring UJ, Weisshaar MP (2004) Hypermethylation of the PTEN gene in ovarian cancer cell lines. Cancer Lett 207:215–220PubMedCrossRefGoogle Scholar
  36. 36.
    Blumenthal GM, Dennis PA (2008) PTEN hamartoma tumor syndromes. Eur J Hum Genet 16:1289–1300PubMedCrossRefGoogle Scholar
  37. 37.
    Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133:403–414PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rong Li
    • 1
    • 2
  • Jun-lin He
    • 1
  • Xue-mei Chen
    • 1
  • Chun-Lan Long
    • 3
  • De-Hui Yang
    • 1
  • Yu-Bin Ding
    • 1
    • 2
  • Hong-Bo Qi
    • 2
  • Xue-Qing Liu
    • 1
  1. 1.Laboratory of Reproductive BiologyChongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of Obstetrics and GynecologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  3. 3.Pediatric Research Institute of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations