Molecular Biology Reports

, Volume 41, Issue 2, pp 1059–1066 | Cite as

Involvement of TNF-α in differential gene expression pattern of CXCR4 on human marrow-derived mesenchymal stem cells

  • Rozita Ziaei
  • Maryam Ayatollahi
  • Ramin Yaghobi
  • Zeinab Sahraeian
  • Nosratollah Zarghami


Cell therapy and tissue repair are used in a variety of diseases including tissue and organ transplantation, autoimmune diseases and cancers. Now mesenchymal stem cells (MSCs) are an attractive and promising source for cell-based therapy according to their individual characteristics. Soluble factors which are able to induce MSCs migration have a vital role in cell engraftment and tissue regeneration. Tumor necrosis factor α (TNF-α) is a major cytokine present in damaged tissues. We have investigated the pattern of gene expression of chemokine receptor CXCR4 in nine groups of human bone marrow-derived MSCs stimulated with TNF-α in different dose and time manner. Comparison of TNF-α treated with untreated MSCs revealed the highest expression level of CXCR4 after treatment with 1, and 10 ng/ml of TNF-α in 24 h, and the production of CXCR4 mRNA was regulated up to 216 and 512 fold, respectively. Our results demonstrated the differential gene expression pattern of chemokine receptor CXCR4 in human marrow-derived MSCs stimulated with inflammatory cytokine TNF-α. These findings suggest that in vitro control of both dose and time factors may be important in stem cell migration capacity, and perhaps in future-stem cell transplantation therapies.


Mesenchymal stem cell Chemokine receptor CXCR4 Tumor necrosis factor α Gene expression pattern Real time PCR 


  1. 1.
    Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical application. Folia Histochem ET Cytol 44(4):215–230Google Scholar
  2. 2.
    Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63CrossRefPubMedGoogle Scholar
  3. 3.
    Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6(6):543–553CrossRefPubMedGoogle Scholar
  4. 4.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefPubMedGoogle Scholar
  5. 5.
    Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12(2):126–131CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ahmadian Kia N, Bahrami AR, Ebrahimi M, Matin MM, Neshati Z, Almohaddesin MR, Aghdami N, Bidkhori HR (2011) Comparative analysis of chemokine receptor`s expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci 44(3):178–185CrossRefPubMedGoogle Scholar
  7. 7.
    Brooke G, Tong T, Levesque JP, Atkinson K (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 17:929–940CrossRefPubMedGoogle Scholar
  8. 8.
    Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106(2):419–427CrossRefPubMedGoogle Scholar
  9. 9.
    Chamberrlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749CrossRefGoogle Scholar
  10. 10.
    Musia RA, Bekchanova ES, Sukhikh GT (2005) Comparison of mesenchymal stem cells obtained from different human tissue. Bull Exp Biol Med 139(4):504–509CrossRefGoogle Scholar
  11. 11.
    De Giorgi U, Cohen NE, Gao H, Mego M, Lee BN, Lodhi A, Cristofanilli M, Lucci A, Reuben MJ (2011) Mesenchymal stem cells expressing GD2 and CD271 correlate with breast cancer-initiating cells in bone marrow. Cancer Biol Ther 11(9):812–815CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz E (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109(10):4245–4248CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bühring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271CrossRefPubMedGoogle Scholar
  14. 14.
    Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C, Rosset P, Sensebé L, Layrolle P, Häupl T, Charbord P (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111(5):2631–2635CrossRefPubMedGoogle Scholar
  15. 15.
    Li L, Jiang J (2011) Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front Med 5(1):33–39CrossRefPubMedGoogle Scholar
  16. 16.
    Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25(7):1737–1745CrossRefPubMedGoogle Scholar
  17. 17.
    Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100(14):8407–8411CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ji JF, He BP, Dheen ST, Tay SS (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal never injury. Stem Cells 22(3):415–427CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang A, Wang Y, Ye Z, Xie H, Zhou L, Zheng S (2010) Mechanism of TNF-α-induced migration and hepatocyte growth factor production in human mesenchymal stem cells. J Cell Biochem 111(2):469–475CrossRefPubMedGoogle Scholar
  20. 20.
    Fu X, Han B, Cai S, Lei Y, Sun T, Sheng Z (2009) Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen 17(2):185–191CrossRefPubMedGoogle Scholar
  21. 21.
    Hemeda H, Jakob M, Ludwig AK, Giebel B, Lang S, Brandau S (2010) Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev 19(5):693–706CrossRefPubMedGoogle Scholar
  22. 22.
    Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226(6):507–520Google Scholar
  23. 23.
    Kollar K, Cook MM, Atkinson K, Brooke G (2009) Molecular mechanisms involved in mesenchymal stem cell migration to the site of acute myocardial infarction. Int J Cell Biol 33(6):623–639Google Scholar
  24. 24.
    Ryu CH, Park SA, Kim SM, Lim JY, Jeong CH, Jun JA, Oh JH, Park SH, Oh WI, Jeun SS (2010) Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun 398(1):105–110CrossRefPubMedGoogle Scholar
  25. 25.
    Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92(7):897–904CrossRefPubMedGoogle Scholar
  26. 26.
    Gangadhar T, Nandi S, Salgia R (2010) The role of chemokine receptor CXCR4 in lung cancer. Cancer Biol Ther 9(6):409–416CrossRefPubMedGoogle Scholar
  27. 27.
    Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, Xu C, Chen X, Huang Y, Zhu Z, Huang X, Han X, Xie N, Ren G (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 20(5):510–518CrossRefPubMedGoogle Scholar
  28. 28.
    Ayatollahi M, Soleimani M, Geramizadeh B, Imanieh MH (2011) Insulin-like growth factor1 (IGF-I) improves hepatic differentiation of human bone marrow-derived mesenchymal stem cells. Cell Biol Int 35(11):1169–1176CrossRefPubMedGoogle Scholar
  29. 29.
    Ayatollahi M, Soleimani M, Geramizadeh B (2012) Conditions to improve expansion of human marrow-derived mesenchymal stem cells based on the rat samples. World J Stem Cells 4(1):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I (2004) A small proportion of mesenchymal stem cells strongly express functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9):2643–2645CrossRefPubMedGoogle Scholar
  31. 31.
    Han Y, Wang J, He T, Ransohoff RM (2001) TNF-α down-regulates CXCR4 expression in primer murine astrocytes. Brain Res 888:1–10CrossRefPubMedGoogle Scholar
  32. 32.
    Zhao C, Lu X, Bu X, Zhang N, Wang W (2010) Involvement of tumor necrosis factor-α in the upregulation of CXCR4 expression in gastric cancer induced by Helicobacter pylori. BMC Cancer 10:419CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Croitoru-Lamoury J, Lamoury FM, Zaunders JJ, Veas LA, Brew BJ (2007) Human mesenchymal stem cells constitutively express chemokines and chemokine receptors that can be upregulated by cytokines, IFN-beta, and copaxone. J Interferon Cytokine Res 27(1):53–64CrossRefPubMedGoogle Scholar
  34. 34.
    Oh JW, Drabik K, Kutsch O, Choi C, Tousson A, Benveniste EN (2001) CXC chemokine receptor 4 expression and function in human astroglioma cells. J Immunol 166(4):2695–2704CrossRefPubMedGoogle Scholar
  35. 35.
    Asagoe K, Yamamoto K, Takahashi A, Suzuki K, Maeda A, Nohgawa M, Harakawa N, Takano K, Mukaida N, Matsushima K, Okuma M, Sasada M (1998–2012) Down-regulation of CXCR2 expression on human polymorphonuclear leukocytes by TNF-α. J Immunol 160:4518–4525Google Scholar
  36. 36.
    Kulbe K, Hagemann T, Szlosarek PW et al (2005) The inflammatory cytokine tumor necrosis factor-α regulates chemokine receptor expression on ovarian cancer cells. Cancer Res 65(22):10355–10362CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rozita Ziaei
    • 1
  • Maryam Ayatollahi
    • 1
  • Ramin Yaghobi
    • 1
  • Zeinab Sahraeian
    • 1
  • Nosratollah Zarghami
    • 1
  1. 1.Transplant Research CenterShiraz University of Medical SciencesShirazIran

Personalised recommendations