Advertisement

Molecular Biology Reports

, Volume 41, Issue 2, pp 855–863 | Cite as

A non-ionic surfactant reduces the induction time and enhances expression levels of bubaline somatotropin in Pichia pastoris

  • Saima SadafEmail author
  • Hammad Arshad
  • M. Waheed AkhtarEmail author
Article

Abstract

This study describes a simple approach for enhanced secretory expression of bubaline somatotropin (BbST) in the methylotropic yeast Pichia pastoris. A Muts Pichia transformant carrying multi-copy, non-codon optimized BbST cDNA sequence, expressed and secreted the recombinant protein into the culture medium to a level of 25 % of the total proteins in the culture supernatant, after 120 h of induction. Inclusion of polysorbate-80 in the inducing medium resulted in a significant improvement in the BbST expression (up to 45 % of the total culture supernatant proteins) with concomitant reduction in the induction time to 48 h. The amount of BbST obtained was 148 mg/L, which was around fivefold higher than that obtained without the surfactant. BbST was purified to near homogeneity by FPLC on Q-sepharose FF anion-exchange column. Protein authenticity was judged by SDS-PAGE and western blot analyses. A bioassay based on proliferation of Nb2 rat lymphoma cell lines confirmed that the purified, recombinant BbST is biologically active. Use of polysorbate-80 in combination with methanol, during the induction phase, is likely to have general applicability in lowering the induction time and enhancing the secretory expression of other commercially important proteins in Muts strains of P. pastoris.

Keywords

AOX-1 promoter α-Factor signal sequence Bubaline somatotropin Methanol induction Pichia pastoris Polysorbate-80 

Notes

Acknowledgments

This work was supported by a Grant from Higher Education Commission, Government of Pakistan.

References

  1. 1.
    Jhamb K, Jawed A, Sahoo DK (2008) Immobilized chaperones: a productive alternative to refolding of bacterial inclusion body proteins. Process Biochem 43:587–597CrossRefGoogle Scholar
  2. 2.
    Bauman DE (1999) Bovine somatotropin and lactation: from basic science to commercial applications. Domest Anim Endocrinol 17:101–116CrossRefPubMedGoogle Scholar
  3. 3.
    Sadaf S, Khan MA, Wilson DB, Akhtar MW (2007) Molecular cloning, characterization and expression studies of water buffalo (Bubalus bubalis) somatotropin. Biochem Mosc 72:162–169CrossRefGoogle Scholar
  4. 4.
    Sadaf S, Khan MA, Akhtar MW (2007) Production of bubaline somatotropin by auto-induction in Escherichia coli. Biotechnol Appl Biochem 47:21–26CrossRefPubMedGoogle Scholar
  5. 5.
    Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332CrossRefPubMedGoogle Scholar
  6. 6.
    Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotropic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefPubMedGoogle Scholar
  7. 7.
    Gurramkonda C, Polez S, Skoko N, Adnan A, Gabel T, Chugh D, Swaminathan S, Khanna N, Tisminetzky S, Rinas U (2010) Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact 9:31CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Calik P, Orman MA, Celik E, Halloran M, Calik G, Ozdamar TH (2008) Expression system for synthesis and purification of recombinant human growth hormone in Pichia pastoris and structural analysis by MALDI-TOF mass spectrometry. Biotechnol Prog 24:221–226CrossRefPubMedGoogle Scholar
  9. 9.
    Braren I, Greunke K, Umland I, Deckers S, Bredehorst R, Spillner E (2007) Comparative expression of different antibody formats in mammalian cells and Pichia pastoris. Biotechnol Appl Biochem 47:205–214CrossRefPubMedGoogle Scholar
  10. 10.
    Turan Y (2008) A pseudo-beta-glucosidase in Arabidopsis thaliana: correction by site-directed mutagenesis, heterologous expression, purification, and characterization. Biochemistry (Mosc) 73:912–919CrossRefGoogle Scholar
  11. 11.
    Kittl R, Mueangtoom K, Gonaus C, Khazaneh ST, Sygmund C, Haltrich D, Ludwig R (2012) A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. J Biotechnol 157:304–314CrossRefPubMedGoogle Scholar
  12. 12.
    Fu XY, Zhao W, Xiong AS, Tian YS, Peng RH (2011) High expression of recombinant Streptomyces sp. S38 xylanase in Pichia pastoris by codon optimization and analysis of its biochemical properties. Mol Biol Rep 38:4991–4997CrossRefPubMedGoogle Scholar
  13. 13.
    Guo Y, Kang W, Zhong Y, Li R, Li G, Shen Y, Hu S, Sun J, Xiao W (2012) Purification and characterization of human IL-10/Fc fusion protein expressed in Pichia pastoris. Protein Expr Purif 83:152–156CrossRefPubMedGoogle Scholar
  14. 14.
    Skoko N, Argamante B, Grujičić NK, Tisminetzky SG, Glišin V, Ljubijankić G (2003) Expression and characterization of human interferon-b1 in the methylotrophic yeast Pichia pastoris. Biotechnol Appl Biochem 38:257–265CrossRefPubMedGoogle Scholar
  15. 15.
    Ouyang J, Wang J, Deng R, Long Q, Wang X (2003) High-level expression, purification, and characterization of porcine somatotropin in Pichia pastoris. Protein Expr Purif 32:28–34CrossRefPubMedGoogle Scholar
  16. 16.
    Orman MA, Calik P, Ozdamar TH (2009) The influence of carbon sources on recombinant-human-growth-hormone production by Pichia pastoris is dependent on phenotype: a comparison of Muts and Mut+ strains. Biotechnol Appl Biochem 52:245–255CrossRefPubMedGoogle Scholar
  17. 17.
    Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270CrossRefPubMedGoogle Scholar
  18. 18.
    Viader-Salvado JM, Fuentes-Garibay JA, Castillo-Galvan M, Iracheta-Cardenas MM, Galan-Wong LJ, Guerrero-Olazaran M (2013) Shrimp (Litopenaeus vannamei) trypsinogen production in Pichia pastoris bioreactor cultures. Biotechnol Prog 29:11–16CrossRefPubMedGoogle Scholar
  19. 19.
    Damasceno LM, Pla I, Chang HJ, Cohen L, Ritter G, Old LJ, Batt CA (2004) An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif 37:18–26CrossRefPubMedGoogle Scholar
  20. 20.
    Sadaf S, Khan MA, Akhtar MW (2008) Expression enhancement of bubaline somatotropin gene in E. coli through modifications in 5′-coding region. J Biotechnol 135:134–139CrossRefPubMedGoogle Scholar
  21. 21.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  22. 22.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  23. 23.
    Hu F, Li X, Lu J, Mao PH, Jin X, Rao B, Zheng P, Zhou YL, Liu SY, Ke T, Ma XD, Ma LX (2011) A visual method for direct selection of high-producing Pichia pastoris clones. BMC Biotechnol 11:23CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Krainer FW, Dietzsch C, Hajek T, Herwig C, Spadiut O, Glieder A (2012) Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microb Cell Fact 11:22CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li Z, Xiong F, Lin Q, d’Anjou M, Daugulis AJ, Yang DSC, Hew CL (2001) Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif 21:438–445CrossRefPubMedGoogle Scholar
  26. 26.
    Wang Y, Wang Z, Xu Q, Du G, Hua Z, Liu L, Li J, Chen J (2009) Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochem 44:949–954CrossRefGoogle Scholar
  27. 27.
    Apte-Deshpande A, Somani S, Mandal G, Soorapaneni S, Padmanabhan S (2009) Over-expression and analysis of O-glycosylated recombinant human granulocyte colony stimulating factor in Pichia pastoris using Agilent 2100 bioanalyzer. J Biotechnol 143:44–50CrossRefPubMedGoogle Scholar
  28. 28.
    Lee JH, Lee SG, Do H, Park JC, Kim E, Choe YH, Han SJ, Kim HJ (2013) Optimization of the pilot-scale production of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl Microbiol Biotechnol 97:3383–3393CrossRefPubMedGoogle Scholar
  29. 29.
    Inan M, Chiruvolu V, Eskridge KM, Valasuk GP, Dickerson K, Brown S, Meagher MM (1999) Optimization of temperature-glycerol-pH conditions for a fed-batch fermentation process for recombinant hookwork (Ancylostoma caninum) anticoagulant peptide (AcAP-5) production by Pichia pastoris. Enzyme Microb Technol 24:438–445CrossRefGoogle Scholar
  30. 30.
    Bae CS, Yang DS, Lee J, Park YH (1999) Improved process for production of recombinant yeast-derived monomeric human G-CSF. Appl Microbiol Biotechnol 52:338–344CrossRefPubMedGoogle Scholar
  31. 31.
    Bahrami A, Shojaosadati A, Khalilzadeh R, Mohammadian J, Farahani EV, Masoumian MR (2009) Prevention of human granulocyte colony-stimulating factor protein aggregation in recombinant Pichia pastoris fed-batch fermentation using additives. Biotechnol Appl Biochem 52:41–48CrossRefGoogle Scholar
  32. 32.
    Reyes-Ruiz JM, Ascacio-Martinez JA, Barrera-Saldana HA (2006) Derivation of a growth hormone gene cassette for goat by mutagenesis of the corresponding bovine construct and its expression in Pichia pastoris. Biotechnol Lett 28:1019–1025CrossRefPubMedGoogle Scholar
  33. 33.
    Ascacio-Martinez JA, Barrera-Saldana HA (2004) Production and secretion of biologically active recombinant canine growth hormone by Pichia pastoris. Gene 340:261–266CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Biochemistry and BiotechnologyUniversity of the PunjabLahorePakistan
  2. 2.School of Biological SciencesUniversity of the PunjabLahorePakistan

Personalised recommendations