Molecular Biology Reports

, Volume 41, Issue 2, pp 823–831 | Cite as

Identification and characterization of RAPD–SCAR markers linked to glyphosate-susceptible and -resistant biotypes of Eleusine indica (L.) Gaertn

Article

Abstract

Eleusine indica is one of the most common weed species found in agricultural land worldwide. Although herbicide-glyphosate provides good control of the weed, its frequent uses has led to abundant reported cases of resistance. Hence, the development of genetic markers for quick detection of glyphosate-resistance in E. indica population is imperative for the control and management of the weed. In this study, a total of 14 specific random amplified polymorphic DNA (RAPD) markers were identified and two of the markers, namely S4R727 and S26R6976 were further sequence characterized. Sequence alignment revealed that marker S4R727 showing a 12-bp nucleotides deletion in resistant biotypes, while marker S26R6976 contained a 167-bp nucleotides insertion in the resistant biotypes. Based on these sequence differences, three pairs of new sequence characterized amplified region (SCAR) primers were developed. The specificity of these primer pairs were further validated with genomic DNA extracted from ten individual plants of one glyphosate-susceptible and five glyphosate-resistant (R2, R4, R6, R8 and R11) populations. The resulting RAPD–SCAR markers provided the basis for assessing genetic diversity between glyphosate-susceptible and -resistant E. indica biotypes, as well for the identification of genetic locus link to glyphosate-resistance event in the species.

Keywords

Goosegrass Molecular marker Insertion–deletion Random amplified polymorphic DNA Sequence characterized amplified region 

Supplementary material

11033_2013_2922_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1055 kb)

References

  1. 1.
    Ganeshaiah KN, Umashaanker R (1982) Evolution of reproductive behaviour in the genus Eleucine. Euphytica 31:397–404CrossRefGoogle Scholar
  2. 2.
    Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM (2002) Glyphosate-resistance goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:1265–1275CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Heap I (2012) International Survey of Herbicide Rresistance Weeds. http://www.weedscience.org. Accessed 10 May 2012
  4. 4.
    McAlister FM, Holtum JAM, Powles SB (1995) Dinitroaniline herbicide resistance in rigid ryegrass (Lolium rigidum). Weed Sci 43:55–62Google Scholar
  5. 5.
    Lee LJ, Ngim J (2000) A first report of glyphosate-resistant goosegrass (Eleusine indica (L.) Gaertn) in Malaysia. Pest Manag Sci 56:336–339CrossRefGoogle Scholar
  6. 6.
    Itoh K, Azmi M, Ahmad A (1990) Paraquat resistance in Amaranthus lividus and Conyza sumatrensis in Malaysia. In: Proceedings of the 3rd tropical weed science conference (Kuala Lumpur, 4–6 Dec 1990). Malaysian Plant Protection Society, Kuala Lumpur, Malaysia, pp 489–493Google Scholar
  7. 7.
    Marshall G, Kirkwood RC, Leach LE (1993) Comparative studies on graminicide-resistant and susceptible biotypes of Eleusine indica. Weed Res 36:177–185Google Scholar
  8. 8.
    Chuah TS, Low VL, Cha TS, Ismail BS (2010) Initial report of glufosinate and paraquat multiple resistance evolved in a biotype of goosegrass (Eleusine indica (L.) Gaertn.) in Malaysia. Weed Biol Manag 10:229–233CrossRefGoogle Scholar
  9. 9.
    Powles SB, Preston C (2006) Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technol 20:282–289CrossRefGoogle Scholar
  10. 10.
    Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347CrossRefPubMedGoogle Scholar
  11. 11.
    Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Powles SB, Lorraine-Colwill DF, Dellow JJ, Preston C (1998) Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci 46:604–607Google Scholar
  13. 13.
    Ng CH, Wickneswari R, Salmijah S, Teng YT, Ismail BS (2003) Gene polymorphisms in glyphosate-resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Res 43:108–115CrossRefGoogle Scholar
  14. 14.
    Ng CH, Wickneswari R, Salmijah S, Teng YT, Ismail BS (2004) Glyphosate resistance in Eleusine indica (L.) Gaertn. from different origins and polymerase chain reaction amplification of specific alleles. Aust J Agric Res 55:407–414CrossRefGoogle Scholar
  15. 15.
    Wakelin AM, Preston C (2006) A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res 46:432–440CrossRefGoogle Scholar
  16. 16.
    Kaundun SS, Dale RP, Zelaya IA, Dinelli G, Marotti I, Mcindoe E, Cairns A (2011) A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in South African Lolium rigidum population. J Agric Food Chem 59:3227–3233CrossRefPubMedGoogle Scholar
  17. 17.
    Gaines TA, Zhang W, Wang D, Bukin B, Chisholm ST, Shaner DL, Nissen SJ, Patzoldt WL, Tranel PJ, Culpeper AS, Grey TL, Webster TM, Vencill WK, Sammons RD, Jiang J, Preston C, Leach JE, Westra P (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci 107:1029–1034CrossRefPubMedGoogle Scholar
  18. 18.
    Gaines TA, Shaner DL, Ward SM, Leach JE, Preston C, Westra P (2011) Mechanism of resistance of evolved glyphosate-resistant Palmer Amaranth (Amaranthus palmeri). J Agric Food Chem 59:5886–5889CrossRefPubMedGoogle Scholar
  19. 19.
    Yu Q, Abdallah I, Han H, Owen M, Powles SB (2009) Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum. Planta 230:713–723CrossRefPubMedGoogle Scholar
  20. 20.
    Dinelli G, Marotti I, Bonetti A, Catizone P, Urbano JM (2008) Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res 48:257–265CrossRefGoogle Scholar
  21. 21.
    Feng PCC, Tran M, Chiu T, Sammons RD, Heck GR, Jacob CA (2004) Investigations into glyphosate-resistant horseweed (Conyza Canadensis): retention, uptake, translocation, and metabolism. Weed Sci 52:498–505CrossRefGoogle Scholar
  22. 22.
    Délye C, Pernin F, Scarabel L (2011) Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Sci 180:333–342CrossRefPubMedGoogle Scholar
  23. 23.
    Yuan JS, Tranel PJ, Stewart CN Jr (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:6–13CrossRefPubMedGoogle Scholar
  24. 24.
    Petit C, Duhieu B, Boucansaud K, Délye C (2010) Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Sci 178:501–509CrossRefGoogle Scholar
  25. 25.
    Masni Afiza M, Nik Marzuki S, Salmijah S, Ismail BS (2008) Studies on the differentially expressed gene in goosegrase (Eleusine indica [L.] Gaertn) resistant to glyphosate using reverse transcriptase-polymerase chain reaction (RT-PCR) approach. Adv Nat Appl Sci 2:1–5Google Scholar
  26. 26.
    Stankiewicz M, Gadamski G, Gawronski SW (2001) Genetic variation and phylogenetic relationships of triazine-resistant and triazine-susceptible biotypes of Solanum nigrum—analysis using RAPD markers. Weed Res 41:287–300CrossRefGoogle Scholar
  27. 27.
    Imaizumi T, Wang GX, Ohsako T, Tominaga T (2008) Genetic diversity of sulfonylurea-resistant and -susceptible Monochoria vaginalis populations in Japan. Weed Res 48:187–196CrossRefGoogle Scholar
  28. 28.
    Aper J, De Riek J, Mechant E, De Cauwer B, Bulcke R, Reheul D (2010) The origin of herbicide-resistant Chenopodium album: analysis of genetic variation and population structure. Weed Res 50:235–244CrossRefGoogle Scholar
  29. 29.
    Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993CrossRefPubMedGoogle Scholar
  30. 30.
    Wang W, Hu Y, Sun D, Staehelin C, Xin D, Xie J (2012) Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana (Musa spp.). Mol Biol Rep 39:451–459CrossRefPubMedGoogle Scholar
  31. 31.
    Singh M, Chaudhary K, Singal HR, Magill CW, Boora KS (2006) Identification and characterization of RAPD and SCAR markers linked to anthracnose resistance gene in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 149:179–187CrossRefGoogle Scholar
  32. 32.
    Miao L, Shou S, Cai J, Jiang F, Zhu Z, Li H (2009) Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Mol Biol Rep 36:479–486CrossRefPubMedGoogle Scholar
  33. 33.
    Hernández P, De La Rosa R, Rallo L, Dorado G, Martín A (2001) Development of SCAR markers in olive (Olea europaea) by direct sequencing of RAPD products: applications in olive germplasm evaluation and mapping. Theor Appl Genet 103:788–791CrossRefGoogle Scholar
  34. 34.
    Sudheer Pamidimarri DVN, Singh S, Mastan SG, Patel J, Reddy MP (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364CrossRefPubMedGoogle Scholar
  35. 35.
    Dwivedi KK, Bhat SR, Bhat V, Gupta MG (2007) Identification of a SCAR marker linked to apomixes in buffelgrass (Cenchrus ciliaris L.). Plant Sci 172:788–795CrossRefGoogle Scholar
  36. 36.
    Strebig JC, Rudermo M, Jensen JE (1993) Dose-response curves and statisitical models. In: Streibig JC, Kudsk P (eds) Herbicide bioassay. CRC Press, Boca Raton, pp 29–56Google Scholar
  37. 37.
    Zimdahl RL (2007) Fundamentals of Weeds Science. Elsevier Academic Press, San DiegoGoogle Scholar
  38. 38.
    Owen MDK, Zelaya IA (2005) Herbicide-resistant crops and weeds resistance to herbicides. Pest Manag Sci 61:301–311CrossRefPubMedGoogle Scholar
  39. 39.
    Volenberg DS, Tranel PJ, Holt JF, Simmons FW, Weller SC, Sharkhuu A, Riechers DE (2007) Assessment of two biotypes of Solanum ptycanthum that differ in resistance levels to imazamox. Weed Res 47:353–363CrossRefGoogle Scholar
  40. 40.
    Baker J, Hidayat I, Preston P (2007) Molecular tools for understanding distribution and spread of weed genotypes. Crop Prot 26:198–205CrossRefGoogle Scholar
  41. 41.
    Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952CrossRefPubMedGoogle Scholar
  42. 42.
    Portis E, Nagy I, Sasvári Z, Stágel A, Barchi L, Lanteri S (2007) The design of Capsicum spp. SSR assays via analysis of in silico DNA sequence, and their potential utility for genetic mapping. Plant Sci 172:640–648CrossRefGoogle Scholar
  43. 43.
    Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genome 11:569CrossRefGoogle Scholar
  44. 44.
    Osipova ES, Lysenko EA, Troitsky AV, Dolgikh YI, Shamina ZB, Gostimskii SA (2011) Analysis of SCAR marker nucleotide sequences in maize (Zea mays L.) somaclones. Plant Sci 180:313–322CrossRefPubMedGoogle Scholar
  45. 45.
    Ren Z, Liu W, Zheng R, Zuo B, Xu D, Lei M, Li F, Li J, Ni D, Xiong Y (2012) A 304 insertion/deletion mutation in promoter region induces the increase of porcine IDH3β gene expression. Mol Biol Rep 39:1419–1426CrossRefPubMedGoogle Scholar
  46. 46.
    Iglesias PP, Caffaro ME, Amadio AF, Mañotti AA, Poli MA (2011) CAPN1 markers in three Argentinean cattle breeds: report of a new InDel polymorphism within intron 17. Mol Biol Rep 38:1645–1649CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thye San Cha
    • 1
    • 2
  • Kaben Anne-Marie
    • 1
  • Tse Seng Chuah
    • 3
  1. 1.School of Fundamental ScienceUniversiti Malaysia TerengganuKuala TerengganuMalaysia
  2. 2.Institute of Marine BiotechnologyUniversiti Malaysia TerengganuKuala TerengganuMalaysia
  3. 3.School of Food Science and TechnologyUniversiti Malaysia TerengganuKuala TerengganuMalaysia

Personalised recommendations