Advertisement

Molecular Biology Reports

, Volume 41, Issue 2, pp 741–749 | Cite as

Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering

  • Neda Daei-farshbaf
  • Abdolreza Ardeshirylajimi
  • Ehsan Seyedjafari
  • Abbas Piryaei
  • Fatemeh Fadaei Fathabady
  • Mehdi Hedayati
  • Mohammad Salehi
  • Masoud Soleimani
  • Hamid Nazarian
  • Sadegh-Lotfalah Moradi
  • Mohsen NorouzianEmail author
Article

Abstract

The combination of bioceramics and stem cells has attracted the interest of research community for bone tissue engineering applications. In the present study, a combination of Bio-Oss® and type 1 collagen gel as scaffold were loaded with human adipose-tissue derived mesenchymal stem cells (AT-MSCs) after isolation and characterization, and the capacity of them for bone regeneration was investigated in rat critical size defects using digital mammography, multi-slice spiral computed tomography imaging and histological analysis. 8 weeks after implantation, no mortality or sign of inflammation was observed in the site of defect. According to the results of imaging analysis, a higher level of bone regeneration was observed in the rats receiving Bio-Oss®-Gel compared to untreated group. In addition, MSC-seeded Bio-Oss-Gel induced the highest bone reconstruction among all groups. Histological staining confirmed these findings and impressive osseointegration was observed in MSC-seeded Bio-Oss-Gel compared with Bio-Oss-Gel. On the whole, it was demonstrated that combination of AT-MSCs, Bio-Oss and Gel synergistically enhanced bone regeneration and reconstruction and also could serve as an appropriate structure to bone regenerative medicine and tissue engineering application.

Keywords

Mesenchymal stem cells Tissue engineering Bone Bioceramic Critical-size defect 

References

  1. 1.
    Williams GR (2009) Actions of thyroid hormones in bone. Endokrynol Pol 60(5):380–388PubMedGoogle Scholar
  2. 2.
    Abe E, Marians RC, Yu W, Wu X-B, Ando T, Li Y, Iqbal J, Eldeiry L, Rajendren G, Blair HC (2003) TSH is a negative regulator of skeletal remodeling. Cell 115(2):151–162CrossRefPubMedGoogle Scholar
  3. 3.
    Tsai J, Janson A, Bucht E, Kindmark H, Marcus C, Stark A, Zemack HR, Torring O (2004) Weak evidence of thyrotropin receptors in primary cultures of human osteoblast-like cells. Calcif Tissue Int 74(5):486–491CrossRefPubMedGoogle Scholar
  4. 4.
    Fadaei Fathabady F, Norouzian M, Azizi F (2005) Effect of Hypothyroidism on Bone Repair inMature Female Rats. Int J Endocrinol Metab 1:126–129Google Scholar
  5. 5.
    Vaidya B, Pearce SH (2008) Management of hypothyroidism in adults. BMJ 337:a801CrossRefPubMedGoogle Scholar
  6. 6.
    Bassett JD, Williams AJ, Murphy E, Boyde A, Howell PG, Swinhoe R, Archanco M, Flamant F, Samarut J, Costagliola S (2008) A lack of thyroid hormones rather than excess thyrotropin causes abnormal skeletal development in hypothyroidism. Mol Endocrinol 22(2):501–512CrossRefPubMedGoogle Scholar
  7. 7.
    Ardeshirylajimi A, Dinarvand P, Seyedjafari E, Langroudi L, Adegani FJ, Soleimani M (2013) Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell Tissue Res 354(3):849–860CrossRefPubMedGoogle Scholar
  8. 8.
    Dinarvand P, Farhadian S, Seyedjafari E, Shafiee A, Jalali A, Sanaei-rad P, Dinarvand B, Soleimani M (2013) Novel approach to reduce postsurgical adhesions to a minimum: administration of losartan plus atorvastatin intraperitoneally. J Surg Res 181(1):91–98CrossRefPubMedGoogle Scholar
  9. 9.
    Arvidson K, Abdallah B, Applegate L, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen Y, Mustafa K (2011) Bone regeneration and stem cells. J Cell Mol Med 15(4):718–746CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Araújo MG, Liljenberg B, Lindhe J (2010) Dynamics of Bio-Oss® collagen incorporation in fresh extraction wounds: an experimental study in the dog. Clin Oral Implant Res 21(1):55–64CrossRefGoogle Scholar
  11. 11.
    Dinarvand P, Hashemi SM, Seyedjafari E, Shabani I, Mohammadi-Sangcheshmeh A, Farhadian S, Soleimani M (2012) Function of poly (lactic-co-glycolic acid) nanofiber in reduction of adhesion bands. J Surg Res 172(1):e1–e9CrossRefPubMedGoogle Scholar
  12. 12.
    Eslaminejad MB, Mirzadeh H, Nickmahzar A, Mohamadi Y, Mivehchi H (2009) Type I collagen gel in seeding medium improves murine mesencymal stem cell loading onto the scaffold, increases their subsequent proliferation, and enhances culture mineralization. J Biomed Mater Res B Appl Biomater 90(2):659–667CrossRefPubMedGoogle Scholar
  13. 13.
    Levi B, James AW, Wan DC, Glotzbach JP, Commons GW, Longaker MT (2010) Regulation of human adipose-derived stromal cell osteogenic differentiation by insulin-like growth factor-1 and platelet-derived growth factor-alpha. Plast Reconstr Surg 126(1):41CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yoon E, Dhar S, Chun DE, Gharibjanian NA, Evans GR (2007) In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng 13(3):619–627CrossRefPubMedGoogle Scholar
  15. 15.
    Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11(4):377–391CrossRefPubMedGoogle Scholar
  16. 16.
    Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49(3):328–337CrossRefPubMedGoogle Scholar
  17. 17.
    Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J, Yin S, Liu W, Cao Y (2007) Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 28(36):5477–5486CrossRefPubMedGoogle Scholar
  18. 18.
    Løken S, Jakobsen RB, Årøen A, Heir S, Shahdadfar A, Brinchmann J, Engebretsen L, Reinholt F (2008) Bone marrow mesenchymal stem cells in a hyaluronan scaffold for treatment of an osteochondral defect in a rabbit model. Knee Surg Sports Traumatol Arthrosc 16(10):896–903CrossRefPubMedGoogle Scholar
  19. 19.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228CrossRefPubMedGoogle Scholar
  20. 20.
    Haimi S, Suuriniemi N, Haaparanta A-M, Ellä V, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Kellomäki M (2008) Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/β-TCP scaffolds. Tissue Eng Part A 15(7):1473–1480CrossRefGoogle Scholar
  21. 21.
    Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem cells 24(2):376–385CrossRefPubMedGoogle Scholar
  22. 22.
    Fraser JK, Schreiber R, Strem B, Zhu M, Alfonso Z, Wulur I, Hedrick MH (2006) Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nat Clin Pract Cardiovasc Med 3:S33–S37CrossRefPubMedGoogle Scholar
  23. 23.
    Ardeshirylajimi A, Hosseinkhani S, Parivar K, Yaghmaie P, Soleimani M (2013) Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage. Mol Biol Rep 40(7):4287–4294CrossRefPubMedGoogle Scholar
  24. 24.
    Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6-to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955CrossRefPubMedGoogle Scholar
  25. 25.
    Ohgushi H, Miyake J, Tateishi T (1999) Mesenchymal stem cells and bioceramics: strategies to regenerate the skeleton. In: Novartis foundation symposium, 2003. Wiley, New York, pp 118–126Google Scholar
  26. 26.
    Takahashi Y, Yamamoto M, Tabata Y (2005) Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and <i> β </i>-tricalcium phosphate. Biomaterials 26(17):3587–3596CrossRefPubMedGoogle Scholar
  27. 27.
    Bigi A, Fini M, Bracci B, Boanini E, Torricelli P, Giavaresi G, Aldini NN, Facchini A, Sbaiz F, Giardino R (2008) The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Biomaterials 29(11):1730–1736CrossRefPubMedGoogle Scholar
  28. 28.
    Dinarvand P, Seyedjafari E, Shafiee A, Babaei Jandaghi A, Doostmohammadi A, Fathi MH, Farhadian S, Soleimani M (2011) New approach to bone tissue engineering: simultaneous application of hydroxyapatite and bioactive glass coated on a poly (L-lactic acid) scaffold. ACS Appl Mater Interfaces 3(11):4518–4524CrossRefPubMedGoogle Scholar
  29. 29.
    Sollazzo V, Palmieri A, Scapoli L, Martinelli M, Girardi A, Alviano F, Pellati A, Perrotti V, Carinci F (2010) Bio-Oss® acts on Stem cells derived from peripheral blood. Oman Med J 25(1):26CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Komlev V, Mastrogiacomo M, Pereira R, Peyrin F, Rustichelli F, Cancedda R (2010) Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomography. Eur Cell Mater 19:136–146PubMedGoogle Scholar
  31. 31.
    Asti A, Visai L, Dorati R, Conti B, Saino E, Sbarra S, Gastaldi G, Benazzo F (2008) Improved cell growth by Bio-Oss/PLA scaffolds for use as a bone substitute. Technol Health Care 16(6):401–413PubMedGoogle Scholar
  32. 32.
    Kim S–S, Kim B-S (2008) Comparison of osteogenic potential between apatite-coated poly (lactide-co-glycolide)/hydroxyapatite particulates and Bio-Oss. Dent Mater J 27(3):368–375CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Neda Daei-farshbaf
    • 1
  • Abdolreza Ardeshirylajimi
    • 2
  • Ehsan Seyedjafari
    • 3
  • Abbas Piryaei
    • 1
  • Fatemeh Fadaei Fathabady
    • 1
  • Mehdi Hedayati
    • 4
  • Mohammad Salehi
    • 5
  • Masoud Soleimani
    • 6
  • Hamid Nazarian
    • 1
  • Sadegh-Lotfalah Moradi
    • 2
  • Mohsen Norouzian
    • 1
    Email author
  1. 1.Departments of Anatomy and Cell BiologyShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Departments of Stem Cell BiologyStem Cell Technology Research CenterTehranIran
  3. 3.Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
  4. 4.Endocrine Research CenterShahid Beheshti University of Medical SciencesTehranIran
  5. 5.Department of Biotechnology, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
  6. 6.Department of Hematology, Faculty of Medical ScienceTarbiat Modares UniversityTehranIran

Personalised recommendations