Molecular Biology Reports

, Volume 41, Issue 2, pp 683–688 | Cite as

DNA methylation status of the methylenetetrahydrofolate reductase gene promoter in peripheral blood of end-stage renal disease patients

  • Maivel Ghattas
  • Fatma El-shaarawy
  • Noha Mesbah
  • Dina Abo-Elmatty


End-stage renal disease (ESRD) is one of the main causes of morbidity and mortality worldwide. DNA methylation is a major epigenetic modification of the genome that has the potential to silence gene expression. Methylenetetrahydrofolate reductase (MTHFR) gene inactivation was recognized as a predisposing factor of hyperhomocysteinemia in renal patients. The current study aimed to determine the methylation status within the MTHFR promoter region in DNA isolated from peripheral blood of ESRD patients and controls and the correlation of this methylation with the clinical and biochemical characteristics in ESRD patients. Ninety-six ESRD patients and 96 healthy ethnically, age and gender matched controls were included within the study. MTHFR promoter methylation was assessed using methylation specific polymerase chain reaction. The frequency of MTHFR methylation was significantly higher in ESRD patients than in controls (P = 0.003), additionally, MTHFR methylation was associated to a decrease in estimated glomerular filtration rate, serum high-density lipoprotein cholesterol level and an increase in both serum total cholesterol and low-density lipoprotein cholesterol levels. Data generated from this study suggest the possible involvement of MTHFR promoter methylation in the pathogenesis of ESRD and support a new dimension of MTHFR inactivation.


End-stage renal disease Methylenetetrahydrofolate reductase DNA methylation Epigenetics 


  1. 1.
    Vasudevan R, Norhasniza MN, Patimah I (2011) Association of variable number of tandem repeats polymorphism in the IL-4 gene with end-stage renal disease in Malaysian patients. Genet Mol Res 10(2):943–947. doi: 10.4238/vol10-2gmr1066 CrossRefPubMedGoogle Scholar
  2. 2.
    Soliman AR, Fathy A, Roshd D (2012) The growing burden of end-stage renal disease in Egypt. Ren Fail 34(4):425–428. doi: 10.3109/0886022x.2011.649671 CrossRefPubMedGoogle Scholar
  3. 3.
    Mahmoud KM, Sheashaa HA, Gheith OA, Wafa EW, Agroudy AE, Sabry AA, Abbas TM, Hamdy AF, Rashad RH, Sobh MA (2010) Continuous ambulatory peritoneal dialysis in Egypt: progression despite handicaps. Perit Dial Int 30(3):269–273. doi: 10.3747/pdi.2009.00001 CrossRefPubMedGoogle Scholar
  4. 4.
    Tripathi G, Sharma RK, Baburaj VP, Sankhwar SN, Jafar T, Agrawal S (2008) Genetic risk factors for renal failure among north Indian ESRD patients. Clin Biochem 41(7–8):525–531. doi: 10.1016/j.clinbiochem.2008.01.009 CrossRefPubMedGoogle Scholar
  5. 5.
    Izmirli M (2013) A literature review of MTHFR (C677T and A1298C polymorphisms) and cancer risk. Mol Biol Rep 40(1):625–637. doi: 10.1007/s11033-012-2101-2 CrossRefPubMedGoogle Scholar
  6. 6.
    Khazamipour N, Noruzinia M, Fatehmanesh P, Keyhanee M, Pujol P (2009) MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum Reprod 24(9):2361–2364. doi: 10.1093/humrep/dep194 CrossRefPubMedGoogle Scholar
  7. 7.
    Austin RC, Lentz SR, Werstuck GH (2004) Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11(Suppl 1):S56–S64. doi: 10.1038/sj.cdd.4401451 CrossRefPubMedGoogle Scholar
  8. 8.
    Herrmann W, Obeid R (2005) Hyperhomocysteinemia and response of methionine cycle intermediates to vitamin treatment in renal patients. Clin Chem Lab Med 43(10):1039–1047. doi: 10.1515/cclm.2005.182 PubMedGoogle Scholar
  9. 9.
    Moustapha A, Naso A, Nahlawi M, Gupta A, Arheart KL, Jacobsen DW, Robinson K, Dennis VW (1998) Prospective study of hyperhomocysteinemia as an adverse cardiovascular risk factor in end-stage renal disease. Circulation 97(2):138–141CrossRefPubMedGoogle Scholar
  10. 10.
    Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16(4):168–174CrossRefPubMedGoogle Scholar
  11. 11.
    Bird A (1992) The essentials of DNA methylation. Cell 70(1):5–8CrossRefPubMedGoogle Scholar
  12. 12.
    Stenvinkel P, Karimi M, Johansson S, Axelsson J, Suliman M, Lindholm B, Heimburger O, Barany P, Alvestrand A, Nordfors L, Qureshi AR, Ekstrom TJ, Schalling M (2007) Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease? J Intern Med 261(5):488–499. doi: 10.1111/j.1365-2796.2007.01777.x CrossRefPubMedGoogle Scholar
  13. 13.
    Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med 354(23):2473–2483. doi: 10.1056/NEJMra054415 CrossRefPubMedGoogle Scholar
  14. 14.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502PubMedGoogle Scholar
  15. 15.
    Manchanda PK, Kumar A, Kaul A, Mittal RD (2006) Correlation between a gene polymorphism of tumor necrosis factor-alpha (G/A) and end-stage renal disease: a pilot study from north India. Clin Chim Acta 370(1–2):152–157. doi: 10.1016/j.cca.2006.02.002 CrossRefPubMedGoogle Scholar
  16. 16.
    Stenvinkel P, Ekstrom TJ (2008) Epigenetics—a helpful tool to better understand processes in clinical nephrology? Nephrol Dial Transplant 23(5):1493–1496. doi: 10.1093/ndt/gfn056 CrossRefPubMedGoogle Scholar
  17. 17.
    Zaina S, Lindholm MW, Lund G (2005) Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr 135(1):5–8PubMedGoogle Scholar
  18. 18.
    Young GH, Wu VC (2012) KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int 81(7):611–612. doi: 10.1038/ki.2011.461 CrossRefPubMedGoogle Scholar
  19. 19.
    Wu W, Shen O, Qin Y, Niu X, Lu C, Xia Y, Song L, Wang S, Wang X (2010) Idiopathic male infertility is strongly associated with aberrant promoter methylation of methylenetetrahydrofolate reductase (MTHFR). PLoS One 5(11):e13884. doi: 10.1371/journal.pone.0013884 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Winkelmayer WC, Kramar R, Curhan GC, Chandraker A, Endler G, Fodinger M, Horl WH, Sunder-Plassmann G (2005) Fasting plasma total homocysteine levels and mortality and allograft loss in kidney transplant recipients: a prospective study. J Am Soc Nephrol 16(1):255–260. doi: 10.1681/asn.2004070576 CrossRefPubMedGoogle Scholar
  21. 21.
    Kang SS, Zhou J, Wong PW, Kowalisyn J, Strokosch G (1988) Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 43(4):414–421PubMedPubMedCentralGoogle Scholar
  22. 22.
    Friedman AN, Bostom AG, Selhub J, Levey AS, Rosenberg IH (2001) The kidney and homocysteine metabolism. J Am Soc Nephrol 12(10):2181–2189PubMedGoogle Scholar
  23. 23.
    Li N, Chen YF, Zou AP (2002) Implications of hyperhomocysteinemia in glomerular sclerosis in hypertension. Hypertension 39(2 Pt 2):443–448CrossRefPubMedGoogle Scholar
  24. 24.
    Chen YF, Li PL, Zou AP (2002) Effect of hyperhomocysteinemia on plasma or tissue adenosine levels and renal function. Circulation 106(10):1275–1281CrossRefPubMedGoogle Scholar
  25. 25.
    Jung YJ, Lee HR, Kwon OJ (2012) Comparison of serum cystatin C and creatinine as a marker for early detection of decreasing glomerular filtration rate in renal transplants. J Korean Surg Soc 83(2):69–74. doi: 10.4174/jkss.2012.83.2.69 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lynn EG, Chung YH, Siow YL, Man RY, Choy PC (1998) Homocysteine stimulates the production and secretion of cholesterol in hepatic cells. Biochim Biophys Acta 1393(2–3):317–324PubMedGoogle Scholar
  27. 27.
    Bologa RM, Levine DM, Parker TS, Cheigh JS, Serur D, Stenzel KH, Rubin AL (1998) Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am J Kidney Dis 32(1):107–114CrossRefPubMedGoogle Scholar
  28. 28.
    Qujeq D, Omran TS, Hosini L (2001) Correlation between total homocysteine, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in the serum of patients with myocardial infarction. Clin Biochem 34(2):97–101CrossRefPubMedGoogle Scholar
  29. 29.
    Coresh J, Kwiterovich PO Jr, Smith HH, Bachorik PS (1993) Association of plasma triglyceride concentration and LDL particle diameter, density, and chemical composition with premature coronary artery disease in men and women. J Lipid Res 34(10):1687–1697PubMedGoogle Scholar
  30. 30.
    Kolovou GD, Anagnostopoulou KK, Cokkinos DV (2005) Pathophysiology of dyslipidemia in the metabolic syndrome. Postgrad Med J 81(956):358–366. doi: 10.1136/pgmj.2004.025601 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Liao D, Tan H, Hui R, Li Z, Jiang X, Gaubatz J, Yang F, Durante W, Chan L, Schafer AI, Pownall HJ, Yang X, Wang H (2006) Hyperhomocysteinemia decreases circulating high-density lipoprotein by inhibiting apolipoprotein A-I protein synthesis and enhancing HDL cholesterol clearance. Circ Res 99(6):598–606. doi: 10.1161/01.res.0000242559.42077.22 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Woo CW, Siow YL, Pierce GN, Choy PC, Minuk GY, Mymin D (2005) Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors. Am J Physiol Endocrinol Metab 288(5):E1002–1010. doi: 10.1152/ajpendo.0 0518.2004CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maivel Ghattas
    • 1
  • Fatma El-shaarawy
    • 2
  • Noha Mesbah
    • 3
  • Dina Abo-Elmatty
    • 3
  1. 1.Department of Medical Biochemistry, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
  2. 2.Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical IndustriesSinai UniversityNorth SinaiEgypt
  3. 3.Department of Biochemistry, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt

Personalised recommendations