Advertisement

Molecular Biology Reports

, Volume 41, Issue 1, pp 489–495 | Cite as

Influence of estrogen and variations at the BRCA1 promoter region on transcription and translation

  • Lívia R. Fernandes
  • Emmerson C. B. Costa
  • Fernando R. Vargas
  • Miguel A. M. MoreiraEmail author
Article

Abstract

We analyzed wild-type (WT) and four sequence variants of the BRCA1 promoter region—found in patients selected for hereditary breast and ovarian cancer syndrome—in respect to their influence on transcription and translation efficiencies in transient transfection assays in the presence or absence of estrogen. Five types of plasmids containing the EGFP reporter gene proceeded by WT 5′UTR-a, WT 5′UTR-b, and the three 5′UTR-b variants were constructed to evaluate their influence on translation. Plasmids containing the firefly luciferase reporter gene were constructed with the WT BRCA1 promoter region (containing promoter α, 5′UTR-a, promoter β, and 5′UTR-b) and with the four promoter variants for evaluating their influence on transcription and translation. All constructs were transfected in MCF7 cells maintained with and without estrogen. Expression of EGFP plasmids with WT 5′UTR-a was six to sevenfold higher than of plasmids with WT 5′UTR-b, expression of WT and the three variant 5′UTR-b plasmids showed slight differences in EGFP expression, and the presence or absence of estrogen result in non-significant changes in expression. Promoter’s constructs that carry the variants WT or g.3988C showed a higher firefly luciferase activity when estrogen is present; conversely, no significant differences were found in the transcription efficiency of the reporter gene indicating that estrogen affect the translation rather than transcription. The presence or absence of estrogen did not affect the activity of firefly luciferase for constructs with the other promoter variants, being the transcription efficiencies equivalent in both conditions.

Keywords

BRCA1 Hereditary breast cancer BRCA1 promoter Estrogen mRNA translation 

Notes

Acknowledgments

This work was supported by INCT para Controle do Cancer, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—Brazil (573806/2008-0 and 304847/2011-9), Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro—FAPERJ—Brazil (E-26/170357/2000). We thank Dr. Hector Seuanez for providing a critical review of the manuscript.

References

  1. 1.
    Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182):66–71. doi: 10.1126/science.7545954 PubMedCrossRefGoogle Scholar
  2. 2.
    Szabo CI, King MC (1995) Inherited breast and ovarian cancer. Human Mol Genet 4:1811–1817Google Scholar
  3. 3.
    Smith TM, Lee MK, Szabo CI, Jerome N, McEuen M, Taylor M, Hood L, King MC (1996) Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res 6(11):1029–1049. doi: 10.1101/gr.6.11.1029 PubMedCrossRefGoogle Scholar
  4. 4.
    Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucl Acids Res 34(5):1416–1426. doi: 10.1093/nar/gkl010 PubMedCrossRefGoogle Scholar
  5. 5.
    Rosen EM, Fan S, Ma Y (2006) BRCA1 regulation of transcription. Cancer Lett 236(2):175–185. doi: 10.1016/j.canlet.2005.04.037 PubMedCrossRefGoogle Scholar
  6. 6.
    Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14(8):927–939. doi: 10.1101/gad.14.8.927 PubMedGoogle Scholar
  7. 7.
    Yoshida K, Miki Y (2004) Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 95(11):866–871. doi: 10.1111/j.1349-7006.2004.tb02195.x PubMedCrossRefGoogle Scholar
  8. 8.
    Mullan PB, Quinn JE, Harkin DP (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 25(43):5854–5863. doi: 10.1038/sj.onc.1209872 PubMedCrossRefGoogle Scholar
  9. 9.
    El-Deiry WS (2002) Transactivation of repair genes by BRCA1. Cancer Biol Ther 1(5):490–491. doi: 10.4161/cbt.1.5.162 PubMedGoogle Scholar
  10. 10.
    Fan S, Wang J, Yuan R, Ma Y, Meng Q, Erdos MR, Pestell RG, Yuan F, Auborn KJ, Goldberg ID, Rosen EM (1999) BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 284(5418):1354–1356. doi: 10.1126/science.284 5418.1354PubMedCrossRefGoogle Scholar
  11. 11.
    Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM (2002) p300 Modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Res 62(1):141–151PubMedGoogle Scholar
  12. 12.
    Xu J, Fan S, Rosen EM (2005) Regulation of the estrogen-inducible gene expression profile by the breast cancer susceptibility gene BRCA1. Endocrinology 146(4):2031–2047. doi: 10.1210/en.2004-0409 PubMedCrossRefGoogle Scholar
  13. 13.
    Hosey AM, Gorski JJ, Murray MM, Quinn JE, Chung WY, Stewart GE, James CR, Farragher SM, Mulligan JM, Scott AN, Dervan PA, Johnston PG, Couch FJ, Daly PA, Kay E, McCann A, Mullan PB, Harkin DP (2007) Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. J Natl Cancer Inst 99(22):1683–1694. doi: 10.1093/jnci/djm207 PubMedCrossRefGoogle Scholar
  14. 14.
    De Siervi A, De Luca P, Byun JS, Di LJ, Fufa T, Haggerty CM, Vazquez E, Moiola C, Longo DL, Gardner K (2010) Transcriptional autoregulation by BRCA1. Cancer Res 70(2):532–542. doi: 10.1158/0008-5472.CAN-09-1477 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4(9):665–676. doi: 10.1038/nrc1431 PubMedCrossRefGoogle Scholar
  16. 16.
    Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT (1995) Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 9(4):444–450. doi: 10.1038/ng0495-444 PubMedCrossRefGoogle Scholar
  17. 17.
    Wilcox CB, Baysal BE, Gallion HH, Strange MA, DeLoia JA (2005) High-resolution methylation analysis of the BRCA1 promoter in ovarian tumors. Cancer Genet Cytogenet 159(2):114–122. doi: 10.1016/j.cancergencyto.2004.12.017 PubMedCrossRefGoogle Scholar
  18. 18.
    Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE (2006) Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res 8(4):R38. doi: 10.1186/bcr1522 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Cazzola M, Skoda RC (2000) Translational pathophysiology: a novel molecular mechanism of human disease. Blood 95(11):3280–3288PubMedGoogle Scholar
  20. 20.
    Signori E, Bagni C, Papa S, Primerano B, Rinaldi M, Amaldi F, Fazio VM (2001) A somatic mutation in the 5′UTR of BRCA1 gene in sporadic breast cancer causes down-modulation of translation efficiency. Oncogene 20(33):4596–4600. doi: 10.1038/sj.onc.1204620 PubMedCrossRefGoogle Scholar
  21. 21.
    Wang J, Lu C, Min D, Wang Z, Ma X (2007) A mutation in the 5′ untranslated region of the BRCA1 gene in sporadic breast cancer causes downregulation of translation efficiency. J Int Med Res 35(4):564–573PubMedCrossRefGoogle Scholar
  22. 22.
    Xu CF, Brown MA, Chambers JA, Griffiths B, Nicolai H, Solomon E (1995) Distinct transcription start sites generate two forms of BRCA1 mRNA. Human Mol Genet 4(12):2259–2264. doi: 10.1093/hmg/4.12.2259 CrossRefGoogle Scholar
  23. 23.
    Xu CF, Chambers JA, Solomon E (1997) Complex regulation of the BRCA1 gene. J Biol Chem 272(34):20994–20997. doi: 10.1074/jbc.272.34.20994 PubMedCrossRefGoogle Scholar
  24. 24.
    Thakur S, Croce CM (1999) Positive regulation of the BRCA1 promoter. J Biol Chem 274(13):8837–8843. doi: 10.1074/jbc.274.13.8837 PubMedCrossRefGoogle Scholar
  25. 25.
    Sobczak K, Krzyzosiak WJ (2002) Structural determinants of BRCA1 translational regulation. J Biol Chem 277(19):17349–17358. doi: 10.1074/jbc.M109162200 PubMedCrossRefGoogle Scholar
  26. 26.
    Bines J., Costa ECB, Vargas FR, Moreira MAM, Moreira AS, Costa CH, Teixeira EMB, Maia MCM, Coura F., Silva CHC (2005) Substitutions at BRCA1 promoter region: clustering of variations in related Brazilian haplotype. ASCO Ann Meet Proc J Clin Oncol 23 (1 Suppl) Google Scholar
  27. 27.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215. doi: 10.1093/nar/16.3.1215 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103(Suppl 7):113–122PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Applied Biosystems (1997) Relative quantitation of gene expression. ABI PRISM 7700 sequence detection system user. Bulletin #2: Rev B. http://docs.appliedbiosystems.com/pebiodocs/04303859.pdf. Accessed 1 May 2013
  30. 30.
    Hockings JK, Thorne PA, Kemp MQ, Morgan SS, Selmin O, Romagnolo DF (2006) The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Res 66(4):2224–2232. doi: 10.1158/0008-5472.CAN-05-1619 PubMedCrossRefGoogle Scholar
  31. 31.
    Hockings JK, Degner SC, Morgan SS, Kemp MQ, Romagnolo DF (2008) Involvement of a specificity proteins-binding element in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene. Breast Cancer Res 10(2):R29. doi: 10.1186/bcr1987 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Verdi JM, Campagnoni AT (1990) Translational regulation by steroids. Identification of a steroid modulatory element in the 5′-untranslated region of the myelin basic protein messenger RNA. J Biol Chem 265(33):20314–20320PubMedGoogle Scholar
  33. 33.
    Miura P, Andrews M, Holcik M, Jasmin BJ (2008) IRES-mediated translation of utrophin A is enhanced by glucocorticoid treatment in skeletal muscle cells. PLoS One 3(6):e2309. doi: 10.1371/journal.pone.0002309 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Sarkar SN, Smith LT, Logan SM, Simpkins JW (2010) Estrogen-induced activation of extracellular signal-regulated kinase signaling triggers dendritic resident mRNA translation. Neuroscience 170(4):1080–1085. doi: 10.1016/j.neuroscience.2010.07.035 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    McEwen B, Akama K, Alves S, Brake WG, Bulloch K, Lee S, Li C, Yuen G, Milner TA (2001) Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation. Proc Natl Acad Sci USA 98(13):7093–7100. doi: 10.1073/pnas.121146898 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lívia R. Fernandes
    • 1
    • 2
  • Emmerson C. B. Costa
    • 1
  • Fernando R. Vargas
    • 3
    • 4
  • Miguel A. M. Moreira
    • 4
    Email author
  1. 1.Departamento de GenéticaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Universidade de São PauloFaculdade de Medicina da Universidade de São PauloSão PauloBrazil
  3. 3.Centro de Ciências Biológicas e da Saúde, Unidade de Genética e Biologia MolecularUniversidade Federal do Estado do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Genetics DivisionInstituto Nacional de CâncerRio de JaneiroBrazil

Personalised recommendations