Advertisement

Molecular Biology Reports

, Volume 41, Issue 1, pp 225–232 | Cite as

MicroRNAs with a role in gene regulation and in human diseases

  • Sami UllahEmail author
  • Peter John
  • Attya Bhatti
Article

Abstract

MicroRNAs (miRNAs) are short 20–22 nucleotide non-coding RNA sequences. Recently identified, these are novel regulators of gene expression at translational level as well as transcriptional level. Alteration in miRNAs level has been observed in a number of human diseases and studies have been conducted on the effect of altered expression level of miRNAs on the development and progression of different diseases. The miRNAs can be used as molecular biomarkers in a number of diseases. Also, miRNAs are promising in providing a new platform for molecular therapeutics of previously incurable diseases. This review will focus on the introduction, recent advances in the field of miRNA and its importance in some human disorders.

Keywords

miRNA Biomarker Regulators Diseases Therapeutics 

References

  1. 1.
    Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563PubMedCrossRefGoogle Scholar
  2. 2.
    Madden SF, Carpenter SB, Jeffery BI, Björkbacka H, Fitzgerald KA, O’Neill LA, Higgins DG (2010) Detecting microRNA activity from gene expression data. BMC Bioinformatics 11:257PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  4. 4.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  5. 5.
    Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862PubMedCrossRefGoogle Scholar
  6. 6.
    Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901PubMedCrossRefGoogle Scholar
  7. 7.
    Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wu W, Sun M, Zou G, Chen J (2006) MicroRNA and cancer: current status and prospective. Int J Cancer 120:953–960CrossRefGoogle Scholar
  9. 9.
    Meltzer PS (2005) Small RNAs with big impacts. Nature 435:745–746 NEWS & ViewsPubMedCrossRefGoogle Scholar
  10. 10.
    Bashirullah A, Pasquinelli AE, Kiger AA, Perrimon N, Ruvkun G, Thummel CS (2003) Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev Biol 259:1–8PubMedCrossRefGoogle Scholar
  11. 11.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  12. 12.
    Sassen S, Eric A, Miska Caldas C (2008) MicroRNA—implications for cancer. Virchows Arch 452:1–10PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Dai R, Zhang Y, Khan D, Heid B, Caudell D et al (2010) Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS One 5:e14302PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Pauley KM et al (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10:R101PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14:305–312PubMedCrossRefGoogle Scholar
  16. 16.
    Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni McGlinn E, Heiser PW, Wills AM, Wirguin I, Lee L, Rubin Misawa H, Tabin CJ, Brown R Jr, Chen A, Hornstein E (2010) miRNA malfunction causes spinal motor neuron disease. PNAS 107:29CrossRefGoogle Scholar
  17. 17.
    Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496PubMedCrossRefGoogle Scholar
  18. 18.
    Xu K, Bogert BA, Li W, Su K, Lee A, Gao FB (2004) The fragile X-related gene affects the crawling behavior of Drosophila larvae by regulating the mRNA level of the DEG/ENaC protein pickpocket1. Curr Biol 14:1025–1034PubMedCrossRefGoogle Scholar
  19. 19.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934PubMedCrossRefGoogle Scholar
  20. 20.
    Santosh PS, Arora N, Sarma P, Pal-Bhadra M, Bhadra U (2009) Interaction map and selection of microRNA targets in parkinson’s disease-related genes. J Biomed Biotechnol 2009:1–11CrossRefGoogle Scholar
  21. 21.
    Lagos-Quintana M et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739PubMedCrossRefGoogle Scholar
  22. 22.
    Marx J (2007) Alzheimer’s disease: a new take on tau. Science 316:1416–1417PubMedCrossRefGoogle Scholar
  23. 23.
    Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathway. J Alzheimer’s Dis 14:27–41Google Scholar
  24. 24.
    Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The Expression of MicroRNA miR-107 Decreases Early in Alzheimer’s Disease and May Accelerate Disease Progression through Regulation of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1. J Neurosci 28(5):1213–1223PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, Strooper BD (2009) MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis 33:422–428PubMedCrossRefGoogle Scholar
  26. 26.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004PubMedCrossRefGoogle Scholar
  27. 27.
    Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198PubMedCrossRefGoogle Scholar
  28. 28.
    Michael MZ, O’Connor SM, Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891PubMedGoogle Scholar
  29. 29.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  30. 30.
    Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:13CrossRefGoogle Scholar
  31. 31.
    Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207:243–249PubMedCrossRefGoogle Scholar
  32. 32.
    Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632PubMedCrossRefGoogle Scholar
  33. 33.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949PubMedCrossRefGoogle Scholar
  34. 34.
    Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283:29897–29903PubMedCrossRefGoogle Scholar
  36. 36.
    Rao X, di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, Burow ME, Ivan M, Croce CM, Nephew KP (2011) MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 30:1082–1097PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE (2010) Oncogenic HER2δ16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 31:2049–2057PubMedCrossRefGoogle Scholar
  38. 38.
    Cittelly DM, Das PM, Spoelstra NS, Edgerton SM, Richer JK, Thor AD, Jones FE (2010) Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer 9:317PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Bergamaschi A, Christensen BL, Katzenellenbogen BS (2011) Reversal of endocrine resistance in breast cancer: interrelationships among 14-3-3ζ, FOXM1, and a gene signature associated with mitosis. Breast Cancer Res 13:R70PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Rothe F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, Badran B, Fayyad-Kazan H, Desmedt C, Harris AL et al (2011) Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One 6:e20980PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo YY (2011) MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 30:822–831PubMedCrossRefGoogle Scholar
  42. 42.
    Masri S, Liu Z, Phung S, Wang E, Yuan YC, Chen S (2010) The role of microRNA-128a in regulating TGFβ signaling in letrozole-resistant breast cancer cells. Breast Cancer Res Treat 124:89–99PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Carissimi C, Fulci V, Macino G (2009) MicroRNAs: novel regulators of immunity. Autoimmun Rev 8:520–524PubMedCrossRefGoogle Scholar
  44. 44.
    Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Ståhle M, Pivarcsi A (2007) MicroRNAs: novel regulators involved in the pathogenesis of Psoriasis. PLoS One 2:610CrossRefGoogle Scholar
  45. 45.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486PubMedCrossRefGoogle Scholar
  46. 46.
    Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, Asahara H (2008) Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 58:1284–1292PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB (2007) Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16:939–946PubMedCrossRefGoogle Scholar
  48. 48.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86PubMedCrossRefGoogle Scholar
  49. 49.
    Otaegui D, Baranzini SE, Armañanzas R, Calvo B, Muñoz-Culla M et al (2009) Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 4(7):e6309PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Keller A, Leidinger P, Lange J, Borries A, Schroers H et al (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 4:e7440PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, Frazier ML, Killary AM, Sen S (2009) MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease 2(9):807–813Google Scholar
  52. 52.
    Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518PubMedCrossRefGoogle Scholar
  53. 53.
    Tsujiura M, Ichikawa D, Komatsu S et al (2010) Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer 102:1174–1179PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Yamamoto Y, Kosaka N, Tanaka M et al (2009) MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers 14:529–538PubMedCrossRefGoogle Scholar
  55. 55.
    Nakamachi Y et al (2009) MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 60:1294–1304PubMedCrossRefGoogle Scholar
  56. 56.
    Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18(3):297–300PubMedCrossRefGoogle Scholar
  57. 57.
    Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14(1):27–41PubMedGoogle Scholar
  58. 58.
    Junn E, Mouradian MM (2011) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 133:142–150PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q et al (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5):1213–1223PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Nelson PT, Wang WX (2010) MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimer’s Dis 21(1):75–79Google Scholar
  61. 61.
    Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121(2):193–205PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E et al (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20(15):3067–3078PubMedCrossRefGoogle Scholar
  64. 64.
    Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ (2008) A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 29(3):438–445PubMedCrossRefGoogle Scholar
  65. 65.
    Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Ceribelli A, Yao B, Dominguez-Gutierrez PR, Nahid MA, Satoh M, Chan EKL (2011) MicroRNAs in systemic rheumatic diseases. Arthritis Res Ther 13(4):229PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Pauley KM, Chaa S, Chan EKL (2009) MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 32(3–4):189–194PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Atta ur Rehman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations