Advertisement

Molecular Biology Reports

, Volume 41, Issue 1, pp 19–24 | Cite as

Silencing MAP3K1 expression through RNA interference enhances paclitaxel-induced cell cycle arrest in human breast cancer cells

  • Pinghua Hu
  • Qin Huang
  • Zhihua Li
  • Xiaobo Wu
  • Qianwen Ouyang
  • Jun Chen
  • Yali CaoEmail author
Article

Abstract

The objective of this study is to compare the expression level of MAP3K1 between normal mammary gland cells and breast cancer cells, and to analyze the effects of silencing MAP3K1 on breast cancer cells with paclitaxel treatment. Western blotting analysis was used to detect the expression level of MAP3K1 in MCF-7 and MCF-12F cells. The effect of gene silencing through different siRNAs was determined by realtime-PCR. MTT assay was used to test the cell proliferation. Cell cycle was detected by flow cytometry. MAP3K1 protein expression level in breast cancer cells was higher than that in normal mammary gland cells. MAP3K1 siRNA transfection significantly reduced the expression level of MAP3K1, and enhanced paclitaxel-induced cell proliferation inhibition and cell cycle arrest in breast cancer cells. Targeting MAP3K1 expression through small RNA interference can promote the therapeutic effects of paclitaxel in breast cancer.

Keywords

MAP3K1 Breast cancer siRNA Cell cycle paclitaxel 

References

  1. 1.
    Boghaert E, Gleghorn JP, Lee K, Gjorevski N, Radisky DC, Nelson CM (2012) Host epithelial geometry regulates breast cancer cell invasiveness. Proc Natl Acad Sci USA 109(48):19632–19637PubMedCrossRefGoogle Scholar
  2. 2.
    Hartmann JT, Kollmannsberger C, Cascorbi I, Mayer F, Schittenhelm MM, Heeger S, Bokemeyer C (2012) A phase I pharmacokinetic study of matuzumab in combination with paclitaxel in patients with EGFR-expressing advanced non-small cell lung cancer. Investig New Drugs 31(3):661–668CrossRefGoogle Scholar
  3. 3.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550PubMedCrossRefGoogle Scholar
  4. 4.
    Karlan BY, Oza AM, Richardson GE, Provencher DM, Hansen VL, Buck M, Chambers SK, Ghatage P, Pippitt CH Jr, Brown JV 3rd et al (2012) Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. J Clin Oncol 30(4):362–371PubMedCrossRefGoogle Scholar
  5. 5.
    Parmar MKLJ, Colombo N, du Bois A, Delaloye JF, Kristensen GB, Wheeler S, Swart AM, Qian W, Torri V, Floriani I, Jayson G, Lamont A, Tropé C, ICON and AGO Collaborators (2003) Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet 361:2099–2106PubMedCrossRefGoogle Scholar
  6. 6.
    Panis C, Herrera AC, Victorino VJ, Campos FC, Freitas LF, De Rossi T, Colado Simao AN, Cecchini AL, Cecchini R (2012) Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat 133(1):89–97PubMedCrossRefGoogle Scholar
  7. 7.
    Ready NE, Rathore R, Johnson TT, Nadeem A, Chougule P, Ruhl C, Radie-Keane K, Theall K, Wanebo HJ, Marcello J et al (2012) Weekly paclitaxel and carboplatin induction chemotherapy followed by concurrent chemoradiotherapy in locally advanced squamous cell carcinoma of the head and neck. Am J Clin Oncol 35(1):6–12PubMedCrossRefGoogle Scholar
  8. 8.
    Kato H, Yanagisawa N, Sasaki S, Hosoda T, Suganuma A, Imamura A, Ajisawa A (2012) Refractory AIDS-associated Kaposi’s sarcoma treated successfully with paclitaxel: a case report. Kansenshogaku Zasshi 86(3):287–290PubMedCrossRefGoogle Scholar
  9. 9.
    Geh E, Meng Q, Mongan M, Wang J, Takatori A, Zheng Y, Puga A, Lang RA, Xia Y (2011) Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure. Proc Natl Acad Sci USA 108(42):17349–17354PubMedCrossRefGoogle Scholar
  10. 10.
    Geh E, Jin C, Xia Y (2010) Map3k1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www signaling-gateway org)Google Scholar
  11. 11.
    Xu CS, Zheng JY, Zhang HL, Zhao HD, Zhang J, Wu GQ, Wu L, Wang Q, Wang WZ (2012) MSP58 knockdown inhibits the proliferation of esophageal squamous cell carcinoma in vitro and in vivo. Asian Pac J Cancer Prev 13(7):3233–3238PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, Coukos G (2003) Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 303(4):1169–1178PubMedCrossRefGoogle Scholar
  13. 13.
    Borkhardt A (2002) Blocking oncogenes in malignant cells by RNA interference–new hope for a highly specific cancer treatment? Cancer Cell 2(3):167–168PubMedCrossRefGoogle Scholar
  14. 14.
    Iorns E, Lord CJ, Turner N, Ashworth A (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6(7):556–568PubMedCrossRefGoogle Scholar
  15. 15.
    Slattery ML, Lundgreen A, Wolff RK (2012) MAP kinase genes and colon and rectal cancer. Carcinogenesis 33(12):2398–2408PubMedCrossRefGoogle Scholar
  16. 16.
    Klinge CM (2005) Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J Biol Chem 280:7460–7468PubMedCrossRefGoogle Scholar
  17. 17.
    Sue Ng S, Mahmoudi T, Li VS, Hatzis P, Boersema PJ, Mohammed S, Heck AJ, Clevers H (2010) MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway. Biol Chem 391(2–3):171–180PubMedGoogle Scholar
  18. 18.
    Pearlman A, Loke J, Le Caignec C, White S, Chin L, Friedman A, Warr N, Willan J, Brauer D, Farmer C et al (2010) Mutations in MAP3K1 cause 46, XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am J Hum Genet 87(6):898–904PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Pietras RJ, Fendly BM, Chazin VR, Pegram MD, Howell SB, Slamon DJ (1994) Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 9(7):1829–1838PubMedGoogle Scholar
  20. 20.
    Helzlsouer KJ, Alberg AJ, Bush TL, Longcope C, Gordon GB, Comstock GW (1994) A prospective study of endogenous hormones and breast cancer. Cancer Detect Prev 18(2):79–85PubMedGoogle Scholar
  21. 21.
    Katano M (2005) Hedgehog signaling pathway as a therapeutic target in breast cancer. Cancer Lett 227:99–104PubMedCrossRefGoogle Scholar
  22. 22.
    MakotoKubo MN, Tasaki Akira, Yamanaka Naoki, Nakashima Hiroshi, Nomura Masatoshi, Kuroki Syoji, Katano Mitsuo (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64:6071–6074CrossRefGoogle Scholar
  23. 23.
    Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Rebbeck TR, DeMichele A, Tran TV, Panossian S, Bunin GR, Troxel AB, Strom BL (2009) Hormone-dependent effects of FGFR2 and MAP3K1 in breast cancer susceptibility in a population-based sample of post-menopausal African-American and European-American women. Carcinogenesis 30(2):269–274PubMedCrossRefGoogle Scholar
  25. 25.
    Huijts PE, Vreeswijk MP, Kroeze-Jansema KH, Jacobi CE, Seynaeve C, Krol-Warmerdam EM, Wijers-Koster PM, Blom JC, Pooley KA, Klijn JG et al (2007) Clinical correlates of low-risk variants in FGFR2, TNRC9, MAP3K1, LSP1 and 8q24 in a Dutch cohort of incident breast cancer cases. Breast Cancer Res 9(6):R78PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA, Bojesen SE, Nordestgaard BG, Axelsson CK, Arias JI et al (2008) Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 4(4):e1000054PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mongan M, Wang J, Liu H, Fan Y, Jin C, Kao WY, Xia Y (2011) Loss of MAP3K1 enhances proliferation and apoptosis during retinal development. Development 138(18):4001–4012PubMedCrossRefGoogle Scholar
  28. 28.
    Boucher MJ, Morisset J, Vachon PH, Reed JC, Laine J, Rivard N (2000) MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 79(3):355–369PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pinghua Hu
    • 1
  • Qin Huang
    • 1
  • Zhihua Li
    • 1
  • Xiaobo Wu
    • 1
  • Qianwen Ouyang
    • 1
  • Jun Chen
    • 1
  • Yali Cao
    • 1
    Email author
  1. 1.Jiangxi Breast Center Third Hospital of NanchangNanchangChina

Personalised recommendations