Molecular Biology Reports

, Volume 40, Issue 12, pp 6709–6720 | Cite as

Molecular characterization of two small heat shock protein genes in rice: their expression patterns, localizations, networks, and heterogeneous overexpressions

  • Deok-Jae Ham
  • Jun-Chul Moon
  • Sun-Goo Hwang
  • Cheol Seong Jang


Heat stress is an example of a severe abiotic stress that plants can suffer in the field, causing a significant detrimental effect on their growth and productivity. Understanding the mechanism of plant response to heat stress is important for improving the productivity of crop plants under global warming. We used a microarray dataset that is deposited in the public database to evaluate plant responses to heat stress, and we selected the top 10 genes that are highly expressed under heat stress in rice. Two genes, OsSHSP1 (Os03g16030) and OsSHSP2 (Os01g04380), were selected for further study. These genes were highly induced in response to salt and drought but not in response to cold. In addition, OsSHSP1 and OsSHSP2 gene transcripts were induced under abscisic acid and salicylic acid but not under jasmonic acid and ethylene. Subcellular localization of proteins of 35S::OsSHSP1 were associated with the cytosol, whereas those of and 35S::OsSHSP2 were associated with the cytosol and nucleus. Heterogeneous overexpression of both genes exhibited higher germination rates than those of wild-type plants under the salt treatment, but not under heat or drought stress, supporting a hypothesis regarding functional specialization of members of small heat-shock protein family over evolutionary time. The network of both genes harboring nine sHSPs as well as at least 13 other chaperone genes might support the idea of a role for sHSPs in the chaperone network. Our findings might provide clues to shed light on the molecular functions of OsSHSP1 and OsSHSP2 in response to abiotic stresses, especially heat stress.


Chaperone network Heat stress Gene family Salt stress Small heat shock protein 



Oryza sativa small heat shock protein


Heat-shock proteins


Small heat-shock protein


Polyethylene glycol


Abscisic acid


Jasmonic acid


Salicylic acid

Supplementary material

11033_2013_2786_MOESM1_ESM.pptx (24.7 mb)
Supplementary material 1 (PPTX 25298 kb)
11033_2013_2786_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 kb)


  1. 1.
    Metz B, Davidson O, Bosch P, Dave R, Meyer L (2007) Contribution of working Group III to the fourth assessment report of the intergovernmental panel on climate change. Climate Change 2007: Mitigation of Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  2. 2.
    Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101(27):9971–9975. doi:10.1073/pnas.0403720101 PubMedCrossRefGoogle Scholar
  3. 3.
    Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric For Meteorol 138(1–4):82–92. doi:10.1016/j.agrformet.2006.03.014 CrossRefGoogle Scholar
  4. 4.
    Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252. doi:10.1016/j.tplants.2004.03.006 PubMedCrossRefGoogle Scholar
  5. 5.
    de Jong WW, Caspers G-J, Leunissen JAM (1998) Genealogy of the α-crystallin—small heat-shock protein superfamily. Int J Biol Macromol 22(3–4):151–162. doi:10.1016/S0141-8130(98)00013-0 PubMedCrossRefGoogle Scholar
  6. 6.
    Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47(3):325–338. doi:10.1093/jxb/47.3.325 CrossRefGoogle Scholar
  7. 7.
    K-d Scharf, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones 6(3):225–237CrossRefGoogle Scholar
  8. 8.
    Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620. doi:10.1146/annurev.pp.42.060191.003051 CrossRefGoogle Scholar
  9. 9.
    Helm KW, Schmeits J, Vierling E (1995) An endomembrane-localized small heat-shock protein from Arabidopsis thaliana. Plant Physiol 107(1):287–288. doi:10.1104/pp.107.1.287 PubMedCrossRefGoogle Scholar
  10. 10.
    Lenne C, Block MA, Jerome G, Douce R (1995) Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J 311:805–813PubMedGoogle Scholar
  11. 11.
    LaFayette P, Nagao R, O’Grady K, Vierling E, Key J (1996) Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Mol Biol 30(1):159–169. doi:10.1007/bf00017810 PubMedCrossRefGoogle Scholar
  12. 12.
    Siddique M, Gernhard S, von Koskull-Doring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13(2):183–197. doi:10.1007/s12192-008-0032-6 PubMedCrossRefGoogle Scholar
  13. 13.
    Ouyang Y, Chen J, Xie W, Wang L, Zhang Q (2009) Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Mol Biol 70(3):341–357. doi:10.1007/s11103-009-9477-y PubMedCrossRefGoogle Scholar
  14. 14.
    Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138(2):882–897. doi:10.1104/pp.105.062257 PubMedCrossRefGoogle Scholar
  15. 15.
    Hu W, Hu G, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176(4):583–590. doi:10.1016/j.plantsci.2009.01.016 CrossRefGoogle Scholar
  16. 16.
    Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223. doi:10.1016/j.envexpbot.2007.05.011 CrossRefGoogle Scholar
  17. 17.
    Zhang X, Henriques R, Lin S-S, Niu Q-w, Chua N-H (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646. doi:10.1038/nprot.2006.97 PubMedCrossRefGoogle Scholar
  18. 18.
    Verslues PE, Bray EA (2004) LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiol 136(1):2831–2842. doi:10.1104/pp.104.045856 PubMedCrossRefGoogle Scholar
  19. 19.
    Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539. doi:10.1111/j.1365-313X.2005.02593.x PubMedCrossRefGoogle Scholar
  20. 20.
    Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33(5):949–956. doi:10.1046/j.1365-313X.2003.01676.x PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17. doi:10.2202/1544-6115.1128 PubMedGoogle Scholar
  22. 22.
    Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7. doi:10.1186/1471-2105-7-S1-S7 CrossRefGoogle Scholar
  23. 23.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi:10.1101/gr.1239303 PubMedCrossRefGoogle Scholar
  24. 24.
    Cho HY, Hwang SG, Kim DS, Jang CS (2012) Genome-wide transcriptome analysis of rice genes responsive to chilling stress. Can J Plant Sci 92(3):447–460. doi:10.4141/Cjps2011-165 CrossRefGoogle Scholar
  25. 25.
    Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38 (Web Server issue):W64–W70. doi:10.1093/nar/gkq310
  26. 26.
    Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15(7):395–401. doi:10.1016/j.tplants.2010.04.006 PubMedCrossRefGoogle Scholar
  27. 27.
    Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217–223. doi:10.1016/S1369-5266(00)80068-0 PubMedGoogle Scholar
  28. 28.
    Lockton S, Gaut BS (2005) Plant conserved non-coding sequences and paralogue evolution. Trends Genet 21(1):60–65. doi:10.1016/j.tig.2004.11.013 PubMedCrossRefGoogle Scholar
  29. 29.
    Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8(2):122–128. doi:10.1016/j.pbi.2004.12.001 PubMedCrossRefGoogle Scholar
  30. 30.
    Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64(2):391–403. doi:10.1093/jxb/ers355 PubMedCrossRefGoogle Scholar
  31. 31.
    Jang CS, Yim WC, Moon JC, Jung JH, Lee TG, Lim SD, Cho SH, Lee KK, Kim W, Seo YW, Lee BM (2008) Evolution of non-specific lipid transfer protein (nsLTP) genes in the Poaceae family: their duplication and diversity. Mol Genet Genomics 279(5):481–497. doi:10.1007/s00438-008-0327-4 PubMedCrossRefGoogle Scholar
  32. 32.
    Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. doi:10.1126/science.1087447 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Deok-Jae Ham
    • 1
  • Jun-Chul Moon
    • 1
    • 2
  • Sun-Goo Hwang
    • 1
  • Cheol Seong Jang
    • 1
  1. 1.Plant Genomics Lab., Department of Applied Plant SciencesKangwon National UniversityChuncheonKorea
  2. 2.Agriculture and Life Sciences Research InstituteKangwon National UniversityChuncheonKorea

Personalised recommendations