Advertisement

Molecular Biology Reports

, Volume 40, Issue 9, pp 5351–5358 | Cite as

Transcriptome meta-analysis of peripheral lymphomononuclear cells indicates that gestational diabetes is closer to type 1 diabetes than to type 2 diabetes mellitus

  • C. V. A. Collares
  • A. F. Evangelista
  • D. J. Xavier
  • P. Takahashi
  • R. Almeida
  • C. Macedo
  • F. Manoel-Caetano
  • M. C. Foss
  • M. C. Foss-Freitas
  • D. M. Rassi
  • E. T. Sakamoto-Hojo
  • G. A. Passos
  • E. A. DonadiEmail author
Article

Abstract

We performed a meta-analysis of the transcription profiles of type 1, type 2 and gestational diabetes to evaluate similarities and dissimilarities among these diabetes types. cRNA samples obtained from peripheral blood lymphomononuclear cells (PBMC) of 56 diabetes mellitus patients (type 1 = 19; type 2 = 20; gestational = 17) were hybridized to the same whole human genome oligomicroarray platform, encompassing 44,000 transcripts. The GeneSpring software was used to perform analysis and hierarchical clustering, and the DAVID database was used for gene ontology. The gene expression profiles showed more similarity between gestational and type 1 diabetes rather than between type 2 and gestational diabetes, a finding that was not influenced by patient gender and age. The meta-analysis of the three types of diabetes disclosed 3,747 differentially and significantly expressed genes. A total of 486 genes were characteristic of gestational diabetes, 202 genes of type 1, and 651 genes of type 2 diabetes. 19 known genes were shared by type 1, type 2 and gestational diabetes, highlighting EGF, FAM46C, HBEGF, ID1, SH3BGRL2, VEPH1, and TMEM158 genes. The meta-analysis of PBMC transcription profiles characterized each type of diabetes revealing that gestational and type 1 diabetes were transcriptionally related.

Keywords

Gene expression profiling Microarray analysis Gestational diabetes mellitus Type 1 diabetes mellitus Type 2 diabetes mellitus 

Notes

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP #2008/56594-8, FAPESP #2010/05622-1, FAPESP #210/00932-2, FAPESP #2010/12069-7).

References

  1. 1.
    Mehers KL, Gillespie KM (2008) The genetic basis for type 1 diabetes. Br Med Bull 88:115–129PubMedCrossRefGoogle Scholar
  2. 2.
    Pugliese A, Miceli D (2002) The insulin gene in diabetes. Diabetes Metab Res Rev 18:13–25PubMedCrossRefGoogle Scholar
  3. 3.
    Kahn CR (1994) Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43:1066–1084PubMedCrossRefGoogle Scholar
  4. 4.
    Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24:613–621PubMedCrossRefGoogle Scholar
  5. 5.
    Petry CJ (2010) Gestational diabetes: risk factors and recent advances in its genetics and treatment. Br J Nutr 104:775–787PubMedCrossRefGoogle Scholar
  6. 6.
    Cho YM, Kim TH, Lim S, Choi SH, Shin HD, Lee HK, Park KS, Jang HC (2009) Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia 52:253–261PubMedCrossRefGoogle Scholar
  7. 7.
    Lapolla A, Dalfra MG, Fedele D (2009) Diabetes related autoimmunity in gestational diabetes mellitus: is it important? Nutr Metab Cardiovasc Dis 19:674–682PubMedCrossRefGoogle Scholar
  8. 8.
    Planas R, Pujol-Borrell R, Vives-Pi M (2010) Global gene expression changes in type 1 diabetes: insights into autoimmune response in the target organ and in the periphery. Immunol Lett 133:55–61PubMedCrossRefGoogle Scholar
  9. 9.
    Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC (2007) Gene expression in peripheral blood mononuclear cells from children with diabetes. J Clin Endocrinol Metab 92:3705–3711PubMedCrossRefGoogle Scholar
  10. 10.
    Al-Salam S, Hameed R, Parvez H, Adeghate E (2009) Pattern of distribution of IGF-1 and EGF in pancreatic islets of type 2 diabetic patients. Islets 1:102–105PubMedCrossRefGoogle Scholar
  11. 11.
    Grissa O, Yessoufou A, Mrisak I, Hichami A, Amoussou-Guenou D, Grissa A, Djrolo F, Moutairou K, Miled A, Khairi H, Zaouali M, Bougmiza I, Zbidi A, Tabka Z, Khan NA (2010) Growth factor concentrations and their placental mRNA expression are modulated in gestational diabetes mellitus: possible interactions with macrosomia. BMC Pregnancy Childbirth 10:1–10CrossRefGoogle Scholar
  12. 12.
    Crow MK (2010) Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res Ther 12(Supp l):S5PubMedCrossRefGoogle Scholar
  13. 13.
    Silva GL, Junta CM, Sakamoto-Hojo ET, Donadi EA, Louzada-Junior P, Passos GA (2009) Genetic susceptibility loci in rheumatoid arthritis are differentially expressed and their mRNAs establish regulatory networks with other gene transcripts. Ann N Y Acad Sci 1173:521–537PubMedCrossRefGoogle Scholar
  14. 14.
    Matsuzawa Y (2005) White adipose tissue and cardiovascular disease. Best Pract Res Clin Endocrinol Metab 19:637–647PubMedCrossRefGoogle Scholar
  15. 15.
    Sakurai D, Yamaguchi A, Tsuchiya N, Yamamoto K, Tokunaga K (2001) Expression of ID family genes in the synovia from patients with rheumatoid arthritis. Biochem Biophys Res Commun 284:436–442PubMedCrossRefGoogle Scholar
  16. 16.
    van Oostrom O, de Kleijn DP, Fledderus JO, Pescatori M, Stubbs A, Tuinenburg A, Lim SK, Verhaar MC (2009) Folic acid supplementation normalizes the endothelial progenitor cell transcriptome of patients with type 1 diabetes: a case–control pilot study. Cardiovasc Diabetol 8:1–11CrossRefGoogle Scholar
  17. 17.
    De Andrade T, Moreira L, Duarte A, Lanaro C, De Albuquerque D, Saad S, Costa F (2010) Expression of new red cell-related genes in erythroid differentiation. Biochem Genet 48:164–171PubMedCrossRefGoogle Scholar
  18. 18.
    Muto E, Tabata Y, Taneda T, Aoki Y, Muto A, Arai K, Watanabe S (2004) Identification and characterization of Veph, a novel gene encoding a PH domain-containing protein expressed in the developing central nervous system of vertebrates. Biochimie 86:523–531PubMedCrossRefGoogle Scholar
  19. 19.
    Silva J, Silva JM, Barradas M, García JM, Domínguez G, García V, Peña C, Gallego I, Espinosa R, Serrano M, Bonilla F (2006) Analysis of the candidate tumor suppressor Ris-1 in primary human breast carcinomas. Mutat Res 594:78–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. V. A. Collares
    • 1
    • 2
  • A. F. Evangelista
    • 2
  • D. J. Xavier
    • 2
  • P. Takahashi
    • 2
  • R. Almeida
    • 2
  • C. Macedo
    • 2
  • F. Manoel-Caetano
    • 2
  • M. C. Foss
    • 3
  • M. C. Foss-Freitas
    • 3
  • D. M. Rassi
    • 1
  • E. T. Sakamoto-Hojo
    • 2
    • 4
  • G. A. Passos
    • 2
  • E. A. Donadi
    • 1
    • 2
    Email author
  1. 1.Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  3. 3.Division of Endocrinology, Department of Medicine, Faculty of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  4. 4.Faculty of Philosophy Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations