Advertisement

Molecular Biology Reports

, Volume 40, Issue 9, pp 5275–5280 | Cite as

Differences of DNA methylation profiles between monozygotic twins’ blood samples

  • Chengtao Li
  • Shumin Zhao
  • Na Zhang
  • Suhua Zhang
  • Yiping Hou
Article

Abstract

Monozygotic twins (MZs) share an identical genomic sequence, which makes it impossible to discriminate one another with conventional genetic markers like STRs. On the other hand, phenotypic discordance between MZs implies the existence of different epigenetic characteristics. DNA methylation, an essential epigenetic modification, however, might be a potential biomarker to solve the forensic puzzle. In this study, we examined 22 pairs of MZs with a methylation BeadChip including 27,578 CpG sites. The results suggested that MZs exhibited remarkable differences of genome-wide 5-methylcytosine. According to a set of criteria of selection, 92 CpG sites with significant differences of methylation status within MZs were identified from the global epigenome. In conclusion, this pilot study suggested that CpG methylation profile could be a useful biomarker in individual identification of MZs.

Keywords

Forensic genetics Individual identification Monozygotic twins DNA methylation 

Notes

Acknowledgments

We are grateful to all volunteers who provided samples for this study. This study was supported by grants from National Key Technology R&D Program of Ministry of Science and Technology of the People`s Republic of China (2012BAK16B01) and the National Nature Science Foundation, People`s Republic of China (nos. 81222041 and 81172908).

Supplementary material

11033_2013_2627_MOESM1_ESM.doc (38 kb)
Supplementary material 1 (DOC 37 kb)

References

  1. 1.
    von Wurmb-Schwark N, Schwark T, Christiansen L, Lorenz D, Oehmichen M (2004) The use of different multiplex PCRs for twin zygosity determination and its application in forensic trace analysis. Leg Med 6(2):125–130CrossRefGoogle Scholar
  2. 2.
    Neel JV, Schull WJ (1954) Human Heredity. University of Chicago Press, ChicagoGoogle Scholar
  3. 3.
    Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD et al (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29(1):169–178PubMedCrossRefGoogle Scholar
  4. 4.
    Petronis A (2006) Epigenetics and twins: three variations on the theme. Trends Genet 22(7):347–350PubMedCrossRefGoogle Scholar
  5. 5.
    Wong AH, Gottesman II, Petronis A (2005) Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet 14(Spec No 1):R11–R18PubMedCrossRefGoogle Scholar
  6. 6.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609PubMedCrossRefGoogle Scholar
  7. 7.
    Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH et al (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41(2):240–245PubMedCrossRefGoogle Scholar
  8. 8.
    Kaminsky Z, Petronis A, Wang SC, Levine B, Ghaffar O, Floden D et al (2008) Epigenetics of personality traits: an illustrative study of identical twins discordant for risk-taking behavior. Twin Res Hum Genet 11(1):1–11PubMedCrossRefGoogle Scholar
  9. 9.
    Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464(7293):1351–1356PubMedCrossRefGoogle Scholar
  10. 10.
    Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068PubMedCrossRefGoogle Scholar
  11. 11.
    Campan M, Weisenberger DJ, Trinh B, Laird PW (2009) MethyLight. Methods Mol Biol 507:325–337PubMedCrossRefGoogle Scholar
  12. 12.
    Wojdacz TK, Dobrovic A (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35(6):e41PubMedCrossRefGoogle Scholar
  13. 13.
    Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B et al (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res 16(3):383–393PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao SM, Zhang SH, Li CT (2010) InDel_typer30: a multiplex PCR system for DNA identification among five Chinese populations. Fa Yi Xue Za Zhi 26(5):343–348, 356PubMedGoogle Scholar
  15. 15.
    Li CT, Zhang SH, Zhao SM (2011) Genetic analysis of 30 InDel markers for forensic use in five different Chinese populations. Genet Mol Res 10:964–979PubMedCrossRefGoogle Scholar
  16. 16.
    Li CT, Li L, Zhao ZM, Lin Y, Que TZ, Liu Y et al (2009) Genetic polymorphism of 17 STR loci for forensic use in Chinese population from Shanghai in East China. Forensic Sci Int Genet 3:e117–e118PubMedCrossRefGoogle Scholar
  17. 17.
    Nautiyal S, Carlton VE, Lu Y, Ireland JS, Flaucher D, Moorhead M et al (2010) High-throughput method for analyzing methylation of CpGs in targeted genomic regions. Proc Natl Acad Sci USA 107(28):12587–12592PubMedCrossRefGoogle Scholar
  18. 18.
    Kim MS, Louwagie J, Carvalho B, Terhaar Sive Droste JS, Park HL, Chae YK et al (2009) Promoter DNA methylation of oncostatin m receptor-beta as a novel diagnostic and therapeutic marker in colon cancer. PLoS ONE 4(8):e6555PubMedCrossRefGoogle Scholar
  19. 19.
    Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404PubMedCrossRefGoogle Scholar
  20. 20.
    Riggs AD, Xiong Z, Wang L, LeBon JM (1998) Methylation dynamics, epigenetic fidelity and X chromosome structure. Novartis Found Symp 214:214–225PubMedGoogle Scholar
  21. 21.
    Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T, Miyamoto K (2003) Fidelity of the methylation pattern and its variation in the genome. Genome Res 13(5):868–874PubMedCrossRefGoogle Scholar
  22. 22.
    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Chengtao Li
    • 1
    • 2
  • Shumin Zhao
    • 2
  • Na Zhang
    • 2
  • Suhua Zhang
    • 2
  • Yiping Hou
    • 1
  1. 1.Department of Forensic Genetics,West China School of Basic Science and Forensic MedicineSichuan University (West China University of Medical Sciences)ChengduPeople’s Republic of China
  2. 2.Shanghai Key Laboratory of Forensic MedicineInstitute of Forensic Sciences, Ministry of JusticeShanghaiPeople’s Republic of China

Personalised recommendations