Molecular Biology Reports

, Volume 40, Issue 8, pp 4713–4719 | Cite as

miR-146a and miR-150 promote the differentiation of CD133+ cells into T-lymphoid lineage

  • Parviz Fallah
  • Ehsan Arefian
  • Mahmood Naderi
  • Seyed Hamid Aghaee-Bakhtiari
  • Amir Atashi
  • Katayoun Ahmadi
  • Abbas Shafiee
  • Masoud SoleimaniEmail author


MicroRNAs control the genes involved in hematopoietic stem cell (HSCs) survival, proliferation and differentiation. The over-expression of miR-146 and miR-150 has been reported during differentiation of HSCs into T-lymphoid lineage. Therefore, in this study we evaluated the effect of their over-expression on CD133+ cells differentiation to T cells. miR-146a and miR-150 were separately and jointly transduced to human cord blood derived CD133+ cells (>97 % purity). We used qRT-PCR to assess the expression of CD2, CD3ε, CD4, CD8, CD25, T cell receptor alpha (TCR-α) and Ikaros genes in differentiated cells 4 and 8 days after transduction of the miRNAs. Following the over-expression of miR-146a, significant up-regulation of CD2, CD4, CD25 and Ikaros genes were observed (P < 0.01). On the other hand, over-expression of miR-150 caused an increase in the expression of Ikaros, CD4, CD25 and TCR-α. To evaluate the combinatorial effect of miR-146a and miR-150, transduction of both miRNAs was concurrently performed which led to increase in the expression of Ikaros, CD4 and CD3 genes. In conclusion, it seems that the effect of miR-150 and miR-146a on the promotion of T cell differentiation is time-dependant. Moreover, miRNAs could be used either as substitutes or complements of the conventional differentiation protocols for higher efficiency.


Human cord blood derived CD133+ cells Ikaros MicroRNA T cell TCR-α 



Hematopoietic stem cell


Quantitative reverse transcriptase polymerase chain reaction


T cell receptor


Cluster differentiation


Untranslated region





This study was supported by a Grant from Stem Cell Technology Research Center, Tehran, Iran. Also, we particularly thank Dr. Yousof Gheisari for his scientific assistance in manuscript writing and Fatemeh Kohram for language editing.

Conflict of interest

No competing financial interests exist.

Supplementary material

11033_2013_2567_MOESM1_ESM.tif (91 kb)
Supplementary figure 1: Picture of vector: pLEX-jRED used for cloning miR-146a (TIFF 90 kb)
11033_2013_2567_MOESM2_ESM.tif (2.4 mb)
Supplementary figure 2: Fluorescent microscopic picture of HEK cells 48 h after transfection (×100). A: Light microscopic picture of the HEK cells. B: The HEK cells transfected with pLEX-jRED + miR-146a. Scale bar=100µm (TIFF 2506 kb)
11033_2013_2567_MOESM3_ESM.doc (27 kb)
Supplementary material 3 (DOC 27 kb)
11033_2013_2567_MOESM4_ESM.tif (243 kb)
Supplementary figure 3: Verification of CD133+ cells separated by flow cytometry. Anti-CD133 and anti-CD34 positive cells percent in R1= 97.4% of total cells. RN1= Q2+Q4 = CD34+ cells, RN2 = Q1+Q2 = CD133+ cells (TIFF 243 kb)


  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  2. 2.
    Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003) The microRNA world: small is mighty. Trends Biochem Sci 28:534–540PubMedCrossRefGoogle Scholar
  3. 3.
    Georgantas RW 3rd, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 104:2750–2755PubMedCrossRefGoogle Scholar
  4. 4.
    Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108:3646–3653PubMedCrossRefGoogle Scholar
  5. 5.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86PubMedCrossRefGoogle Scholar
  6. 6.
    Chen CZ, Lodish HF (2005) MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 17:155–165PubMedCrossRefGoogle Scholar
  7. 7.
    Garzon R, Croce CM (2008) MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358PubMedCrossRefGoogle Scholar
  8. 8.
    Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, McCoy JP Jr, Sloand EM, Kajigaya S, Young NS (2006) Hematopoietic-specific microRNA expression in human cells. Leuk Res 30:643–647PubMedCrossRefGoogle Scholar
  9. 9.
    Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349:59–68PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 104:7080–7085PubMedCrossRefGoogle Scholar
  11. 11.
    Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T (2007) Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun 364:509–514PubMedCrossRefGoogle Scholar
  12. 12.
    Bruchova H, Merkerova M, Prchal JT (2008) Aberrant expression of microRNA in polycythemia vera. Haematologica 93:1009–1016PubMedCrossRefGoogle Scholar
  13. 13.
    Navarro F, Lieberman J (2010) Small RNAs guide hematopoietic cell differentiation and function. J Immunol 184:5939–5947PubMedCrossRefGoogle Scholar
  14. 14.
    Bellon M, Lepelletier Y, Hermine O, Nicot C (2009) Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood 113:4914–4917PubMedCrossRefGoogle Scholar
  15. 15.
    Lindsay MA (2008) MicroRNAs and the immune response. Trends Immunol 29:343–351CrossRefGoogle Scholar
  16. 16.
    Sonkoly E, Pivarcsi A (2009) MicroRNAs in inflammation. Int Rev Immunol 28:535–561PubMedCrossRefGoogle Scholar
  17. 17.
    Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefGoogle Scholar
  18. 18.
    Hagen JW, Lai EC (2008) MicroRNA control of cell-cell signaling during development and disease. Cell Cycle 7:2327–2332PubMedGoogle Scholar
  19. 19.
    La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC (2005) Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105:1431–1439CrossRefGoogle Scholar
  20. 20.
    Yang Q, Jeremiah Bell J, Bhandoola A (2010) T-cell lineage determination. Immunol Rev 238:12–22PubMedCrossRefGoogle Scholar
  21. 21.
    Rooney CM (2012) Adoptive transfer of virus-directed T cells: will this fly for flu? Cytotherapy 14:133–134CrossRefGoogle Scholar
  22. 22.
    Merkerova M, Belickova M, Bruchova H (2008) Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol 81:304–310PubMedCrossRefGoogle Scholar
  23. 23.
    Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4:1038–1045CrossRefGoogle Scholar
  24. 24.
    De Smedt M, Leclercq G, Vandekerckhove B, Kerre T, Taghon T, Plum J (2011) T-lymphoid differentiation potential measured in vitro is higher in CD34 + CD38−/lo hematopoietic stem cells from umbilical cord blood than from bone marrow and is an intrinsic property of the cells. Haematologica 96:646–654PubMedCrossRefGoogle Scholar
  25. 25.
    Pelagiadis I, Relakis K, Kalmanti L, Dimitriou H (2012) CD133 immunomagnetic separation: effectiveness of the method for CD133(+) isolation from umbilical cord blood. Cytotherapy 14:701–706Google Scholar
  26. 26.
    Rothenberg EV, Zhang J, Li L (2010) Multilayered specification of the T-cell lineage fate. Immunol Rev 238:150–168PubMedCrossRefGoogle Scholar
  27. 27.
    Seligmann M, Preud’Homme JL, Brouet JC (1973) B and T cell markers in human proliferative blood diseases and primary immunodeficiencies, with special reference to membrane bound immunoglobulins. Transplant Rev 16:85–113PubMedGoogle Scholar
  28. 28.
    Gaundar SS, Blyth E, Clancy L, Simms RM, Ma CK, Gottlieb DJ (2012) In vitro generation of influenza-specific polyfunctional CD4+ T cells suitable for adoptive immunotherapy. Cytotherapy 14:182–193PubMedCrossRefGoogle Scholar
  29. 29.
    Kathrein KL, Chari S, Winandy S (2008) Ikaros directly represses the notch target gene Hes1 in a leukemia T cell line: implications for CD4 regulation. J Biol Chem 283:10476–10484PubMedCrossRefGoogle Scholar
  30. 30.
    Kreslavsky T, Gleimer M, Garbe AI, von Boehmer H (2010) alphabeta versus gammadelta fate choice: counting the T-cell lineages at the branch point. Immunol Rev 238:169–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Parviz Fallah
    • 1
    • 2
  • Ehsan Arefian
    • 1
    • 3
  • Mahmood Naderi
    • 1
    • 4
  • Seyed Hamid Aghaee-Bakhtiari
    • 1
  • Amir Atashi
    • 5
  • Katayoun Ahmadi
    • 1
  • Abbas Shafiee
    • 1
    • 6
  • Masoud Soleimani
    • 5
    Email author
  1. 1.Department of Molecular Biology and Genetic EngineeringStem Cell Technology Research CenterTehranIran
  2. 2.Department of Pathobiology, School of MedicineAlborz University of Medical SciencesKarajIran
  3. 3.Microbial Biotechnology Laboratory, Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
  4. 4.Department of Biotechnology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  5. 5.Department of Hematology, Faculty of Medical ScienceTarbiat Modares UniversityTehranIran
  6. 6.Department of Tissue Engineering, School of Advanced Medical TechnologiesTehran University of Medical SciencesTehranIran

Personalised recommendations