Molecular Biology Reports

, Volume 40, Issue 7, pp 4339–4347 | Cite as

Association between LEPR and MC4R genes polymorphisms and composition of milk from sows of dam line

  • M. Szyndler-Nędza
  • M. Tyra
  • K. Ropka-Molik
  • K. Piórkowska
  • A. Mucha
  • M. Różycki
  • M. Koska
  • K. Szulc
Article

Abstract

The polymorphisms of LEPR and MC4R genes are involved in appetite control mechanisms and indirectly associated with level of fat content in pig carcasses. Therefore, the aim of our study was to determine if both polymorphisms have an effect on components of colostrum and milk of sows. In our study we used gilts of two Polish breeds: Polish Landrace and Polish Large White, which belong to dam-line in Polish breeding. Colostrum and milk of sows were collected in 7, 14 and 21 day of lactation to assay solids, total protein, fat and lactose. The obtained results showed, that the observed mutation (G/A 1426 MC4R) had a significant effect mainly on the fat and solids content of colostrum. Animals with the MC4RAA genotype had 2.13 and 1.91 % (P ≤ 0.01) lower fat content of colostrum compared to sows with the MC4RGG genotype and heterozygous MC4RAG. The presence of the MC4RA allele in the animals’ genotype contributed to a decrease in fat and solids content of colostrum. The LEPR/HpaII mutation was found to have a considerable effect on the level of most colostrum components (fat, protein and solids) in both pig breeds. Significant decrease in the value of the colostrum components (except lactose) was observed only for animals with the allele LEPRB. The results obtained suggest that these genes might be used in selection of dam-line pigs as genetic markers of milk quality.

Keywords

Pigs Maternal breeds MC4R LEPR Milk composition 

References

  1. 1.
    Migdał W (1996) Fats and glucose in feeding sows. Zesz Nauk Akad Rol w Krakowie, 1233–4189, Rozprawy 213, p 72Google Scholar
  2. 2.
    Walkiewicz A, Wielbo E, Matyka S (1997) Chemical content of milk from wild sows (Sus scrofa ferus). Ann Univ Mariae Curie-Skłodowska Sect EE 15:93–98Google Scholar
  3. 3.
    Walkiewicz A, Wielbo E, Matyka S, Babicz M, Kasprzyk A (1999) Effect of genotype on chemical composition variability and fatty acid concentration in sow’s milk. Zesz Nauk Akad Rolniczej Kraków 67(352):285–290Google Scholar
  4. 4.
    Skrzypczak E, Babicz M, Szulc K, Marcisz M, Buczyński JT (2012) The analysis of variability of pH level and somatic cell Mount (SCC) In the colostrum and milk of złotnicka white sows. Afr J Biotechnol 11(20):4687–4692Google Scholar
  5. 5.
    Migdał W, Kaczmarczyk J (1986) Chemical composition of the colostrum and milk of sows during lactation. Med Wet 8:492–494Google Scholar
  6. 6.
    Weikard R, Kühn C, Goldammer T, Frever G, Schwerin M (2005) The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genomics 21(1):1–13PubMedCrossRefGoogle Scholar
  7. 7.
    Barb CR, Robertson AS, Barrett JB, Kraeling RR, Houseknecht KL (2004) The role of melanocortin-3 and -4 receptor in regulating appetite, energy homeostasis and neuroendocrine function in the pig. J Endocrinol 181:39–52PubMedCrossRefGoogle Scholar
  8. 8.
    Hausman GJ, Barb CR (2010) Adipose tissue and the reproductive axis: biological aspects. Endocr Dev 19:31–44PubMedCrossRefGoogle Scholar
  9. 9.
    Barb CR, Hausman GJ, Czaja K (2005) Leptin: a metabolic signal affecting central regulation of reproduction in the pig. Domest Anim Endocrinol 29:186–192PubMedCrossRefGoogle Scholar
  10. 10.
    Chien EK, Hara M, Rouard M, Yano H, Phillippe M, Polonsky KS, Bell GI (1997) Increase in serum leptin and uterine leptin receptor messenger RNA levels during pregnancy in rats. Biochem Biophys Res Commun 237:476–480PubMedCrossRefGoogle Scholar
  11. 11.
    Ehrhardt RA, Slepetis RM, Bell AW, Boisclair YR (2001) Maternal leptin is elevated during pregnancy in sheep. Domest Anim Endocrinol 21:85–96PubMedCrossRefGoogle Scholar
  12. 12.
    Hardie L, Trayhurn P, Abramovich D, Fowler P (1997) Circulating leptin in women: a longitudinal study in the menstrual cycle and during pregnancy. Clin Endocrinol 47:101–106CrossRefGoogle Scholar
  13. 13.
    Henson MC, Castracane VD (2000) Leptin in pregnancy. Biol Reprod 63:1219–1228PubMedCrossRefGoogle Scholar
  14. 14.
    Woodside B, Abizaid A, Jafferali S (1998) Effect of acute food deprivation on lactational infertility in rats is reduced by leptin administration. Am J Physiol 274:1653–1658Google Scholar
  15. 15.
    Block SS, Butler RW, Ehrhardt RA, Bell AW, van Amburgh ME, Boisclair YR (2001) Decreased concentration of plasma leptin in periparturient dairy cows is caused by negative energy balance. J Endocrinol 171:339–348PubMedCrossRefGoogle Scholar
  16. 16.
    Estienne MJ, Harper AF, Barb CR, Azain MJ (2000) Concentrations of leptin in serum and milk collected from lactating sows differing in body condition. Domest Anim Endocrinol 19:275–280PubMedCrossRefGoogle Scholar
  17. 17.
    Męczekalski B, Czyżyk A, Warenik-Szymaszkiewicz A (2008) The role of genes in pathogenesis of obesity. Contemporary view, pathogenesis, clinical aspect. Endokrynologia, Otyłość i Zaburzenia Przemiany Materii 4(1):27–37Google Scholar
  18. 18.
    Kim KS, Reecy JM, Hsu WH, Anderson LL, Rothschild MF (2004) Functional and phylogenetic analyses of a melanocortin-4 receptor mutation in domestic pigs. Domest Anim Endocrinol 26:75–86PubMedCrossRefGoogle Scholar
  19. 19.
    Piórkowska K, Tyra M, Rogoz M, Ropka-Molik K, Oczkowicz M, Różycki M (2010) Association of the melanocortin-4 receptor (MC4R) with feed intake, growth, fatness and carcass composition in pigs raised in Poland. Meat Sci 85(2):297–301PubMedCrossRefGoogle Scholar
  20. 20.
    Van den Maagdenberg K, Stinckens A, Claeys E, Seynaeve M, Clinquart A, Georges M, Buys N, De Smet S (2007) The Asp298Asn missense mutation in the porcine melanocortin-4 receptor (MC4R) gene can be used to affect growth and carcass traits without an effect on meat quality. Animal 1(8):1089–1098PubMedGoogle Scholar
  21. 21.
    Li X, Kim SW, Choi JS, Lee YM, Lee CK, Choi BH, Kim TH, Choi YI, Kim JJ, Kim KS (2010) Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Mol Biol Rep 37(8):3931–3939PubMedCrossRefGoogle Scholar
  22. 22.
    Uemoto Y, Kikuchi T, Nakano H, Sato S, Shibata T, Kadowaki H, Katoh K, Kobayashi E, Suzuki K (2012) Effects of porcine leptin receptor gene polymorphisms on backfat thickness, fat area ratios by image analysis, and serum leptin concentrations in a Duroc purebred population. Anim Sci J 83(5):375–385PubMedCrossRefGoogle Scholar
  23. 23.
    Pérez-Montarelo D, Fernández A, Folch JM, Pena RN, Ovilo C, Rodríguez C, Silió L, Fernández AI (2012) Joint effects of porcine leptin and leptin receptor polymorphisms on productivity and quality traits. Anim Genet. doi:10.1111/j.1365-2052.2012.02338.x PubMedGoogle Scholar
  24. 24.
    Muñoz G, Alcázar E, Fernández A, Barragán C, Carrasco A, de Pedro E, Silió L, Sánchez JL, Rodriguez MC (2011) Effects of porcine MC4R and LEPR polymorphisms, gender and Duroc sire line on economic traits in Duroc x Iberian crossbred pigs. Meat Sci 88(1):169–173PubMedCrossRefGoogle Scholar
  25. 25.
    Sun C, Wang L, Jiang DF, Zhang B (2009) Missense mutations in exon 2 of the porcine leptin receptor gene and their associations with litter size and body weight. Czech J Anim Sci 54(5):210–216Google Scholar
  26. 26.
    Tyra M, Ropka-Molik K (2011) Effect of the FABP3 and LEPR gene polymorphisms and expression levels on intramuscular fat (IMF) content and fat cover degree in pigs. Livest Sci 142:114–120CrossRefGoogle Scholar
  27. 27.
    Burgos C, Carrodeguas JA, Moreno C, Altarriba J, Tarrafeta L, Barcelona JA, López-Buesa P (2006) Allelic incidence in several pig breeds of a missense variant of pig melanocortin-4 receptor (MC4R) gene associated with carcass and productive traits; its relation to IGF2 genotype. Meat Sci 73:144–150PubMedCrossRefGoogle Scholar
  28. 28.
    Stratil A, Kopecny M, Moser G, Schroffel J, Cepica S (1998) HpaII and RsaI PCRRFLPs within an intron of the porcine leptin receptor gene (LEPR) and its linkage mapping. Anim Genet 29:398–413CrossRefGoogle Scholar
  29. 29.
    Paściak P, Migdał W, Wojtysiak D, Połtowicz K (2003) Chemical composition of colostrum and milk of JSR sows. Rocz Nauk Zoot 17:85–88Google Scholar
  30. 30.
    Walkiewicz A, Stasiak A, Dziura J, Kamyk P, Babicz M (2004) Zmienność składu chemicznego i koncentracji kwasów tłuszczowych w siarze i mleku loch mieszańców. Zesz Nauk Przegl Hod 72(2):19–25Google Scholar
  31. 31.
    Migdał W, Koczanowski J, Klocek C, Tuz R, Paściak P, Wojtysiak D, Orlicki S (2005) Chemical composition of colostrum and milk from Polish Landrace and Polish large white sows. Ann Anim Sci Suppl 1:43–46Google Scholar
  32. 32.
    Buczyński JT, Skrzypczak E, Panek A, Szulc K (2006) Chemical composition of milk of Złotnicka white sows during lactation. Ann Anim Sci Suppl 2(2):315–319Google Scholar
  33. 33.
    Stachowiak M, Szydłowski M, Obarzanek-Fojt M, Świtoński M (2006) An effect of a missense mutation in the porcine melanocortin-4 receptor (MC4R) gene on production traits in Polish pig breeds is doubtful. Anim Genet 37(1):55–57PubMedCrossRefGoogle Scholar
  34. 34.
    Adan RA, Tiesjema B, Hillebrand JJ, la Fleurm SE, Kasm MJ, de Kromm M (2006) The MC4R receptor and control of appetite. Br J Pharmacol 149:815–827PubMedCrossRefGoogle Scholar
  35. 35.
    Monaco MH, Grounlund DE, Bleck GT, Hurley WL, Wheeler MB, Donovan SM (2005) Mammary specific transgenic over-expression of insulin-like growth factor-I (IGF-I) increases pig milk IGF-I and IGF binding proteins, with no effect on milk composition or yield. Transgenic Res 14(5):761–773PubMedCrossRefGoogle Scholar
  36. 36.
    Babicz M (2008) Polimorfizm wybranych genów potencjalnie związanych z użytkowością rozpłodową świń rasy puławskiej. Rozprawy Naukowe—Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie. 1899–2374; z. 338, 77sGoogle Scholar
  37. 37.
    Sheehy PA, Riley LG, Raadsma HW, Williamson P, Wynn PC (2009) A functional genomics approach to evaluate candidate genes located in a QTL interval for milk production traits on BTA6. Anim Genet 40(4):492–498PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang CL, Chen H, Wang YH, Zhang RF, Lan XY, Lei CZ, Zhang L, Zhang AL, Hu SR (2008) Serotonin receptor 1B (HTR1B) genotype associated with milk production traits in cattle. Res Vet Sci 85(2):265–268PubMedCrossRefGoogle Scholar
  39. 39.
    Khatib H, Zaitoun I, Wiebelhaus-Finger J, Chang YM, Rosa GJ (2007) The association of bovine PPARGC1A and OPN genes with milk composition in two independent Holstein cattle populations. J Dairy Sci 90(6):2966–2970PubMedCrossRefGoogle Scholar
  40. 40.
    Banos G, Woolliams JA, Woodward BW, Forbes AB, Coffey MP (2008) Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. J Dairy Sci 91(8):3190–3200PubMedCrossRefGoogle Scholar
  41. 41.
    Suchocki T, Komisarek J, Szyda J (2010) Testing candidate gene effects on milk production traits in dairy cattle under various parameterizations and modes of inheritance. J Dairy Sci 93(6):2703–2717PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Szyndler-Nędza
    • 1
  • M. Tyra
    • 1
  • K. Ropka-Molik
    • 2
  • K. Piórkowska
    • 2
  • A. Mucha
    • 1
  • M. Różycki
    • 1
  • M. Koska
    • 3
  • K. Szulc
    • 4
  1. 1.Department of Animal Genetics and BreedingNational Research Institute of Animal ProductionBalicePoland
  2. 2.Laboratory of GenomicsNational Research Institute of Animal ProductionBalicePoland
  3. 3.Żerniki Wielkie Sp. z o.o.National Research Institute of Animal ProductionŻórawinaPoland
  4. 4.Department of Pig Breeding and ProductionThe Poznan University of Live SciencePoznanPoland

Personalised recommendations