Molecular Biology Reports

, Volume 40, Issue 5, pp 3731–3737

Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis

  • Mingyuan Liu
  • Xiaojun Hou
  • Ping Zhang
  • Yong Hao
  • Yiting Yang
  • Xiongfeng Wu
  • Desheng Zhu
  • Yangtai Guan
Article

Abstract

Multiple sclerosis (MS) is the most prevalent demyelinating disease and the principal cause of neurological disability in young adults. Recent microarray gene expression profiling studies have identified several genetic variants contributing to the complex pathogenesis of MS, however, expressional and functional studies are still required to further understand its molecular mechanism. The present study aimed to analyze the molecular mechanism of MS using microarray analysis combined with bioinformatics techniques. We downloaded the gene expression profile of MS from Gene Expression Omnibus (GEO) and analysed the microarray data using the differentially coexpressed genes (DCGs) and links package in R and Database for Annotation, Visualization and Integrated Discovery. The regulatory impact factor (RIF) algorithm was used to measure the impact factor of transcription factor. A total of 1,297 DCGs between MS patients and healthy controls were identified. Functional annotation indicated that these DCGs were associated with immune and neurological functions. Furthermore, the RIF result suggested that IKZF1, BACH1, CEBPB, EGR1, FOS may play central regulatory roles in controlling gene expression in the pathogenesis of MS. Our findings confirm the presence of multiple molecular alterations in MS and indicate the possibility for identifying prognostic factors associated with MS pathogenesis.

Keywords

Multiple sclerosis Differentially coexpressed genes Regulatory impact factor MS pathogenesis 

References

  1. 1.
    Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517. doi:10.1016/S0140-6736(08)61620-7 PubMedCrossRefGoogle Scholar
  2. 2.
    Rosati G (2001) The prevalence of multiple sclerosis in the world: an update. Neurol Sci 22(2):117–139PubMedCrossRefGoogle Scholar
  3. 3.
    Fontoura P, Garren H (2010) Multiple sclerosis therapies: molecular mechanisms and future. Results Probl Cell Differ 51:259–285. doi:10.1007/400_2010_36 PubMedCrossRefGoogle Scholar
  4. 4.
    Smolders J (2011) Vitamin D and multiple sclerosis: correlation, causality, and controversy. Autoimmune Dis 2011:629538. doi:10.4061/2011/629538 Google Scholar
  5. 5.
    van der Mei IA, Ponsonby AL, Dwyer T, Blizzard L, Simmons R, Taylor BV, Butzkueven H, Kilpatrick T (2003) Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case–control study. BMJ 327(7410):316. doi:10.1136/bmj.327.7410.316327/7410/316 PubMedCrossRefGoogle Scholar
  6. 6.
    Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357(9):851–862. doi:10.1056/NEJMoa073493 PubMedCrossRefGoogle Scholar
  7. 7.
    Schonrock LM, Gawlowski G, Bruck W (2000) Interleukin-6 expression in human multiple sclerosis lesions. Neurosci Lett 294(1):45–48PubMedCrossRefGoogle Scholar
  8. 8.
    Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508. doi:10.1038/nm0502-500nm0502-500 PubMedCrossRefGoogle Scholar
  9. 9.
    Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg JR, Steinman L (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294(5547):1731–1735. doi:10.1126/science.1062960294/5547/1731 PubMedCrossRefGoogle Scholar
  10. 10.
    John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, Brosnan CF (2002) Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8(10):1115–1121. doi:10.1038/nm781nm781 PubMedCrossRefGoogle Scholar
  11. 11.
    Lim CK, Brew BJ, Sundaram G, Guillemin GJ (2010) Understanding the roles of the kynurenine pathway in multiple sclerosis progression. Int J Tryptophan Res 3:157–167PubMedGoogle Scholar
  12. 12.
    Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101 (discussion 101–103, 119–128, 244–152)PubMedCrossRefGoogle Scholar
  13. 13.
    Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30PubMedCrossRefGoogle Scholar
  14. 14.
    Carter SL, Brechbuhler CM, Griffin M, Bond AT (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20(14):2242–2250. doi:10.1093/bioinformatics/bth234bth234 PubMedCrossRefGoogle Scholar
  15. 15.
    Choi JK, Yu U, Yoo OJ, Kim S (2005) Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 21(24):4348–4355. doi:10.1093/bioinformatics/bti722 PubMedCrossRefGoogle Scholar
  16. 16.
    de la Fuente A (2010) From ‘differential expression’ to ‘differential networking’—identification of dysfunctional regulatory networks in diseases. Trends Genet 26(7):326–333. doi:10.1016/j.tig.2010.05.001 PubMedCrossRefGoogle Scholar
  17. 17.
    Yu H, Liu BH, Ye ZQ, Li C, Li YX, Li YY (2011) Link-based quantitative methods to identify differentially coexpressed genes and gene pairs. BMC Bioinform 12:315. doi:10.1186/1471-2105-12-315 CrossRefGoogle Scholar
  18. 18.
    Liu BH, Yu H, Tu K, Li C, Li YX, Li YY (2010) DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. Bioinformatics 26(20):2637–2638. doi:10.1093/bioinformatics/btq471 PubMedCrossRefGoogle Scholar
  19. 19.
    Team RDC (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  20. 20.
    Benjamini YHY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  21. 21.
    da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211 CrossRefGoogle Scholar
  22. 22.
    Reverter A, Hudson NJ, Nagaraj SH, Perez-Enciso M, Dalrymple BP (2010) Regulatory impact factors: unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics 26(7):896–904. doi:10.1093/bioinformatics/btq051 PubMedCrossRefGoogle Scholar
  23. 23.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi:10.1101/gr.123930313/11/2498 PubMedCrossRefGoogle Scholar
  24. 24.
    Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52(1):61–76. doi:10.1016/j.neuron.2006.09.011 PubMedCrossRefGoogle Scholar
  25. 25.
    Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D, Wu W, Uitdehaag BM, Kappos L, Polman CH, Matthews PM, Hauser SL, Gibson RA, Oksenberg JR, Barnes MR (2009) Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 18(11):2078–2090. doi:10.1093/hmg/ddp120 PubMedCrossRefGoogle Scholar
  26. 26.
    Cunninghame Graham DS, Morris DL, Bhangale TR, Criswell LA, Syvanen AC, Ronnblom L, Behrens TW, Graham RR, Vyse TJ (2011) Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet 7(10):e1002341. doi:10.1371/journal.pgen.1002341 PubMedCrossRefGoogle Scholar
  27. 27.
    Kastner P, Chan S (2011) Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem 2(6):108–114. doi:10.4331/wjbc.v2.i6.108 PubMedCrossRefGoogle Scholar
  28. 28.
    Payne KJ, Dovat S (2011) Ikaros and tumor suppression in acute lymphoblastic leukemia. Crit Rev Oncog 16(1–2):3–12PubMedCrossRefGoogle Scholar
  29. 29.
    Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10:411–452. doi:10.1146/annurev.iy.10.040192.002211 PubMedCrossRefGoogle Scholar
  30. 30.
    Tyor WR, Glass JD, Baumrind N, McArthur JC, Griffin JW, Becker PS, Griffin DE (1993) Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy. Neurology 43(5):1002–1009PubMedCrossRefGoogle Scholar
  31. 31.
    Raine CS (1995) Multiple sclerosis: TNF revisited, with promise. Nat Med 1(3):211–214PubMedCrossRefGoogle Scholar
  32. 32.
    Tan J, Town T, Paris D, Placzek A, Parker T, Crawford F, Yu H, Humphrey J, Mullan M (1999) Activation of microglial cells by the CD40 pathway: relevance to multiple sclerosis. J Neuroimmunol 97(1–2):77–85PubMedCrossRefGoogle Scholar
  33. 33.
    Tan J, Town T, Saxe M, Paris D, Wu Y, Mullan M (1999) Ligation of microglial CD40 results in p44/42 mitogen-activated protein kinase-dependent TNF-alpha production that is opposed by TGF-beta 1 and IL-10. J Immunol 163(12):6614–6621PubMedGoogle Scholar
  34. 34.
    Jana M, Dasgupta S, Liu X, Pahan K (2002) Regulation of tumor necrosis factor-alpha expression by CD40 ligation in BV-2 microglial cells. J Neurochem 80(1):197–206PubMedCrossRefGoogle Scholar
  35. 35.
    Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW (2004) Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin Neurol Neurosurg 106(3):223–229. doi:10.1016/j.clineuro.2004.02.019 PubMedCrossRefGoogle Scholar
  36. 36.
    Antony JM, Ellestad KK, Hammond R, Imaizumi K, Mallet F, Warren KG, Power C (2007) The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. J Immunol 179(2):1210–1224PubMedGoogle Scholar
  37. 37.
    Yu JS, Hayashi T, Seboun E, Sklar RM, Doolittle TH, Hauser SL (1991) Fos RNA accumulation in multiple sclerosis white matter tissue. J Neurol Sci 103(2):209–215PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mingyuan Liu
    • 1
  • Xiaojun Hou
    • 1
  • Ping Zhang
    • 1
  • Yong Hao
    • 1
  • Yiting Yang
    • 1
  • Xiongfeng Wu
    • 1
  • Desheng Zhu
    • 1
  • Yangtai Guan
    • 1
  1. 1.Department of NeurologyChanghai HospitalShanghaiChina

Personalised recommendations