Molecular Biology Reports

, Volume 40, Issue 4, pp 3333–3340 | Cite as

Major histocompatibility complex and other allergy-related candidate genes associated with insect bite hypersensitivity in Icelandic horses

  • Marie Klumplerova
  • Leona Vychodilova
  • Olga Bobrova
  • Michaela Cvanova
  • Jan Futas
  • Eva Janova
  • Mirko Vyskocil
  • Irena Vrtkova
  • Lenka Putnova
  • Ladislav Dusek
  • Eliane Marti
  • Petr HorinEmail author


Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of insects. IBH is a multifactorial disease with contribution of genetic and environmental factors. Candidate gene association analysis of IBH was performed in a group of 89 Icelandic horses all born in Iceland and imported to Europe. Horses were classified in IBH-affected and non-affected based on clinical signs and history of recurrent dermatitis, and on the results of an in vitro sulfidoleukotriene (sLT)-release assay with Culicoides nubeculosus and Simulium vittatum extract. Different genetic markers were tested for association with IBH by the Fisher’s exact test. The effect of the major histocompatibility complex (MHC) gene region was studied by genotyping five microsatellites spanning the MHC region (COR112, COR113, COR114, UM011 and UMN-JH34-2), and exon 2 polymorphisms of the class II Eqca-DRA gene. Associations with Eqca-DRA and COR113 were identified (p < 0.05). In addition, a panel of 20 single nucleotide polymorphisms (SNPs) in 17 candidate allergy-related genes was tested. During the initial screen, no marker from the panel was significantly (p < 0.05) associated with IBH. Five SNPs associated with IBH at p < 0.10 were therefore used for analysis of combined genotypes. Out of them, SNPs located in the genes coding for the CD14 receptor (CD14), interleukin 23 receptor (IL23R), thymic stromal lymphopoietin (TSLP) and transforming growth factor beta 3 (TGFB3) molecules were associated with IBH as parts of complex genotypes. These results are supported by similar associations and by expression data from different horse populations and from human studies.


Horse Insect bite hypersensitivity Major histocompatibility complex Association analysis 



The work was supported by the Grant Agency of the Czech Republic projects 523/06/1402 and 524/09/1939, by IGA VFU project 22/05/FVL, and by the Swiss National Science Foundation Grant No. 310030_129837/1.


  1. 1.
    Cunningham FM, Dunkel B (2008) Equine recurrent airway obstruction and insect bite hypersensitivity: understanding the diseases and uncovering possible new therapeutic approaches. Vet J 177:334–344CrossRefPubMedGoogle Scholar
  2. 2.
    Marti E, Gerber V, Wilson AD, Lavoie JP, Horohov D, Crameri R, Lunn DP, Antczak D, Björnsdóttir S, Björnsdóttir TS, Cunningham F, Dérer M, Frey R, Hamza E, Horin P, Heimann M, Kolm-Stark G, Olafsdóttir G, Ramery E, Russell C, Schaffartzik A, Svansson V, Torsteinsdóttir S, Wagner B (2008) Report of the 3rd Havemeyer workshop on allergic diseases of the Horse, Hólar, Iceland, June 2007. Vet Immunol Immunopathol 126:351–361CrossRefPubMedGoogle Scholar
  3. 3.
    Schaffartzik A, Hamza E, Janda J, Crameri R, Marti E, Rhyner C (2012) Equine insect bite hypersensitivity: what do we know? Vet Immunol Immunopathol 147:13–126CrossRefGoogle Scholar
  4. 4.
    Baselgia S, Doherr MG, Mellor P, Torsteinsdottir S, Jermann T, Zurbriggen A, Jungi T, Marti E (2006) Evaluation of an in vitro sulphidoleukotriene release test for diagnosis of insect bite hypersensitivity in horses. Equine Vet J 38:40–46CrossRefPubMedGoogle Scholar
  5. 5.
    Eriksson S, Grandinson K, Fikse WF, Lindberg L, Mikko S, Broström H, Frey R, Sundquist M, Lindgren G (2008) Genetic analysis of insect bite hypersensitivity (summer eczema) in Icelandic horses. Animal 2:360–365CrossRefPubMedGoogle Scholar
  6. 6.
    Schurink A, Ducro BJ, Heuven HC, van Arendonk JA (2011) Genetic parameters of insect bite hypersensitivity in Dutch Friesian broodmares. J Anim Sci 89:1286–1293CrossRefPubMedGoogle Scholar
  7. 7.
    Marti E, Gerber H, Lazary S (1992) On the genetic basis of equine allergic diseases: II. Insect bite dermal hypersensitivity. Equine Vet J 24:113–117CrossRefPubMedGoogle Scholar
  8. 8.
    Lazary S, Marti E, Szalai G, Gaillard C, Gerber H (1994) Studies on the frequency and associations of equine leucocyte antigens in sarcoid and summer dermatitis. Anim Genet 25:75–80PubMedGoogle Scholar
  9. 9.
    Andersson LS, Swinburne JE, Meadows JR, Broström H, Eriksson S, Fikse WF, Frey R, Sundguist M, Tseng CT, Mikko S, Lindgren G (2012) The same ELA class II risk factors confer equine insect bite hypersensitivity in two distinct populations. Immunogenetics 64:201–208CrossRefPubMedGoogle Scholar
  10. 10.
    Hoffjan S, Epplen JT (2005) The genetics of atopic dermatitis: recent findings and future options. J Mol Med 83:682–692CrossRefPubMedGoogle Scholar
  11. 11.
    Schurink A, Ducro BJ, Bastiaansen JW, Frankena K, van Arendonk JA (2012) Genome-wide association study of insect bite hypersensitivity in Dutch Shetland pony mares. Anim Genet. doi: 10.1111/j.1365-2052.2012.02368.x
  12. 12.
    Björnsdóttir S, Sigvaldadóttir J, Broström H, Langvad B, Sigurdsson A (2006) Summer eczema in exported Icelandic horses: influence of environmental and genetic factors. Acta Vet Scand 48:3CrossRefPubMedGoogle Scholar
  13. 13.
    Albright-Fraser DG, Reid R, Gerber V, Bailey E (1996) Polymorphism of DRA among equids. Immunogenetics 43:315–317PubMedGoogle Scholar
  14. 14.
    Janova E, Matiasovic J, Vahala J, Vodicka R, Van Dyk E, Horin P (2009) Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae. Immunogenetics 61:513–527CrossRefPubMedGoogle Scholar
  15. 15.
    Tseng CT, Miller D, Cassano J, Bailey E, Antczak DF (2010) Identification of equine major histocompatibility complex haplotypes using polymorphic microsatellites. Anim Genet 41(Suppl. 2):150–153CrossRefPubMedGoogle Scholar
  16. 16.
    Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, Hoboken, p 710CrossRefGoogle Scholar
  17. 17.
    Li W (2007) Three lectures on case-control genetic association analysis. Brief Bioinform 9:1–13CrossRefPubMedGoogle Scholar
  18. 18.
    Zar JH (1999) Biostatical analysis, 4th edn. Prentice Hall, Upper Saddle River, p 662Google Scholar
  19. 19.
    Akey J (2009) Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res 19:711–722CrossRefPubMedGoogle Scholar
  20. 20.
    Michel S, Liang LM, Depner M, Klopp N, Ruether A, Kumar A, Schedel M, Vogelberg C, von Mutius E, von Berg A, Bufe A, Rietschel E, Heinzmann A, Laub O, Simma B, Frischer T, Genuneit J, Gut IG, Schreiber S, Lathrop M, Illig T, Kabesch M (2010) Unifying candidate gene and GWAS approaches in asthma. PLoS ONE. doi: 10.1371/journal.pone.0013894 Google Scholar
  21. 21.
    Csöngei V, Járomi L, Sáfrány E, Sipeky C, Magyari L, Faragó B, Bene J, Polgár N, Lakner L, Sarlós P, Varga M, Melegh B (2010) Interaction of the major inflammatory bowel disease susceptibility alleles in Crohn’s disease patients. World J Gastroenterol 16:176–183CrossRefPubMedGoogle Scholar
  22. 22.
    Arkwright PD, Chase MJ, Babbage S, Pravica D, David TJ, Hutchinson IV (2001) Atopic dermatitis is associated with a low producer transforming growth factor beta (1) cytokine genotype. J Allergy Clin Immunol 108:281–284CrossRefPubMedGoogle Scholar
  23. 23.
    Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171:3262–3269PubMedGoogle Scholar
  24. 24.
    Litonjua AA, Belanger K, Celedón JC, Milton DK, Bracken MB, Kraft P, Triche EW, Sredl DL, Weiss ST, Leaderer BP, Gold DR (2005) Polymorphisms in the 5′ region of the CD14 gene are associated with eczema in young children. J Allergy Clin Immunol 115:1056–1062CrossRefPubMedGoogle Scholar
  25. 25.
    Wood SH, Ollier WE, Nuttall T, McEwan NA, Carter SD (2010) Despite identifying some shared gene associations with human atopic dermatitis the use of multiple dog breeds from various locations limits detection of gene associations in canine atopic dermatitis. Vet Immunol Immunopathol 138:193–197CrossRefPubMedGoogle Scholar
  26. 26.
    Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H, Ziegler SF (2012) The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond. J Leukoc Biol 91:877–886CrossRefPubMedGoogle Scholar
  27. 27.
    Sümegi A, Szegedi A, Gál M, Hunyadi J, Szegedi G, Antal-Szalmás P (2007) Analysis of components of the CD14/TLR system on leukocytes of patients with atopic dermatitis. Int Arch Allergy Immunol 143:177–184CrossRefPubMedGoogle Scholar
  28. 28.
    Boguniewicz M, Leung DY (2011) Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev 242:233–246CrossRefPubMedGoogle Scholar
  29. 29.
    Eckert RL, Green H (1986) Structure and evolution of the human involucrin gene. Cell 46:583–589CrossRefPubMedGoogle Scholar
  30. 30.
    Capon F, Di Meglio P, Szaub J, Prescott NJ, Dunster C, Baumber L, Timms K, Gutin A, Abkevic V, Burden AD, Lanchbury J, Barker JN, Trembath RC, Nestle FO (2007) Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet 122:201–206CrossRefPubMedGoogle Scholar
  31. 31.
    Peng J, Yang XO, Chang SH, Yang J, Dong C (2010) IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation. Cell Res 20:62–71CrossRefPubMedGoogle Scholar
  32. 32.
    Hamza E, Doherr MG, Bertoni G, Jungi TW, Marti E (2007) Modulation of allergy incidence in Icelandic horses is associated with a change in IL-4-producing T cells. Int Arch Allergy Immunol 144:325–337PubMedGoogle Scholar
  33. 33.
    Heimann M, Janda J, Sigurdardottir OG, Svansson V, Klukowska J, von Tscharner C, Doherr M, Broström H, Andersson LS, Einarsson S, Marti E, Torsteinsdottir S (2011) Skin-infiltrating T cells and cytokine expression in Icelandic horses affected with insect bite hypersensitivity: a possible role for regulatory T cells. Vet Immunol Immunopathol 140:63–74CrossRefPubMedGoogle Scholar
  34. 34.
    Cox DA (1995) Transforming growth factor-beta3. Cell Biol Int 19:357–371CrossRefPubMedGoogle Scholar
  35. 35.
    Hamza E, Wagner B, Jungi TW, Mirkovitch J, Marti E (2008) Reduced incidence of insect-bite hypersensitivity in Icelandic horses is associated with a down-regulation of interleukin-4 by interleukin-10 and transforming growth factor-β1. Vet Immunol Immunopathol 122:65–75CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Marie Klumplerova
    • 1
    • 5
  • Leona Vychodilova
    • 1
  • Olga Bobrova
    • 1
  • Michaela Cvanova
    • 2
  • Jan Futas
    • 1
  • Eva Janova
    • 1
  • Mirko Vyskocil
    • 1
  • Irena Vrtkova
    • 3
  • Lenka Putnova
    • 3
  • Ladislav Dusek
    • 2
  • Eliane Marti
    • 4
  • Petr Horin
    • 1
    • 5
    Email author
  1. 1.Institute of Animal Genetics, Faculty of Veterinary MedicineUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  2. 2.Institute of Biostatistics and AnalysesMasaryk UniversityBrnoCzech Republic
  3. 3.Laboratory of AgrigenomicsMendel UniversityBrnoCzech Republic
  4. 4.Department of Clinical Research-VPH, Vetsuisse FacultyUniversity of BerneBerneSwitzerland
  5. 5.Ceitec VFU, University of Veterinary and Pharmaceutical SciencesBrnoCzech Republic

Personalised recommendations