Molecular Biology Reports

, Volume 40, Issue 4, pp 3281–3290 | Cite as

Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress

  • María Fernanda Álvarez Viveros
  • Claudio Inostroza-Blancheteau
  • Tania Timmermann
  • Máximo González
  • Patricio Arce-Johnson


The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.


Salt tolerance Transgenic tomato Glyoxalase genes Oxidative stress Reactive oxygen species 



We are grateful to Dr. Sudhir K. Sopory, Plant Molecular Biology, International Center for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India for providing the construction with two genes (GlyI and GlyII) of the glyoxalase pathway. This work was financially supported by the Fruit Consortium, Innova Corfo 11IDL2-10423 and the Millennium Nucleus for Plant Functional Genomics (P10-062-F).


  1. 1.
    Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527PubMedCrossRefGoogle Scholar
  2. 2.
    Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109PubMedCrossRefGoogle Scholar
  3. 3.
    Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71PubMedCrossRefGoogle Scholar
  4. 4.
    Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19:965–969PubMedCrossRefGoogle Scholar
  5. 5.
    Singh GS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33CrossRefGoogle Scholar
  6. 6.
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  7. 7.
    Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost, common and different paths for plant protection. Curr Opin Biotechnol 14:194–199PubMedCrossRefGoogle Scholar
  8. 8.
    Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hiraj MY, Noji M, Saito K, Masuda T, Takamiya KI, Shibata D, Ohta H (2005) Coordinated activation of metabolic pathways for antioxidants and defense compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:563–668CrossRefGoogle Scholar
  9. 9.
    Ahuja I, de Vos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:1360–1385CrossRefGoogle Scholar
  10. 10.
    Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238Google Scholar
  11. 11.
    Gould SK (2003) Free radicals, oxidative stress and antioxidants. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences. Elsevier, Amsterdam, pp 9–16Google Scholar
  12. 12.
    Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep 26:1663–1672PubMedCrossRefGoogle Scholar
  13. 13.
    Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677PubMedCrossRefGoogle Scholar
  14. 14.
    Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11PubMedGoogle Scholar
  15. 15.
    Reddy VSV, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395PubMedCrossRefGoogle Scholar
  16. 16.
    Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64Google Scholar
  17. 17.
    Foolad MR, Lin GY (1997) Genetic potential for salt tolerance during germination in Lycopersicon species. HortScience 32:296–300Google Scholar
  18. 18.
    Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5:159–163Google Scholar
  19. 19.
    Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X (2010) Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol 51:997–1006PubMedCrossRefGoogle Scholar
  20. 20.
    Pozueta-Romero JG, Houlne L, Cañas R, Schantz J, Chamarro J (2001) Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell Tissue Org 67:173–180CrossRefGoogle Scholar
  21. 21.
    Kyte L, Kleyn J (1996) Plants from test tubes: an introduction to micropropagation, 3rd edn. Timber Press, Inc., PortlandGoogle Scholar
  22. 22.
    Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J Exp Bot 61:453–462PubMedCrossRefGoogle Scholar
  23. 23.
    Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180PubMedCrossRefGoogle Scholar
  24. 24.
    Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334CrossRefGoogle Scholar
  25. 25.
    Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85–100CrossRefGoogle Scholar
  26. 26.
    Monje OA, Bugbee B (1992) Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters. HortScience 27:69–71PubMedGoogle Scholar
  27. 27.
    Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of non invasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194CrossRefGoogle Scholar
  28. 28.
    Carvalho LC, Santos S, Velile BJ, Amâncio S (2008) Solanum lycopersicon Mill. and Nicotiana benthamiana L. under high light show distinct responses to anti-oxidative stress. J Plant Physiol 165:1300–1312PubMedCrossRefGoogle Scholar
  29. 29.
    Arnon DI (1949) Cooper enzymes in isolated chloroplast. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15PubMedCrossRefGoogle Scholar
  30. 30.
    Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194CrossRefGoogle Scholar
  31. 31.
    Eherenfeld N, Cañón P, Stange C, Medina C, Arce-Johnson P (2005) Tobamovirus coat protein CPCG induces an HR-like response in sensitive tobacco plants. Mol Cells 19:418–427Google Scholar
  32. 32.
    Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198PubMedCrossRefGoogle Scholar
  33. 33.
    Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1556–1570CrossRefGoogle Scholar
  34. 34.
    Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611CrossRefGoogle Scholar
  35. 35.
    Flores P, Botella MA, Cerdá A, Martínez V (2004) Influence of nitrate level on nitrate assimilation in tomato (Lycopersicon esculentum) plants under saline stress. Can J Bot 82:207–213CrossRefGoogle Scholar
  36. 36.
    Zushi K, Matsuzoe N, Kitano M (2009) Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Sci Hortic 122:362–368CrossRefGoogle Scholar
  37. 37.
    Jenks M, Hasegawa P (2005) Plant abiotic stress. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  38. 38.
    Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. In: Luttge U et al (eds) Progress in botany, vol 69., part 3 Springer, Berlin, pp 231–245CrossRefGoogle Scholar
  39. 39.
    Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi A, Tari I (2011) Cross-talk between salicylic acid and NaCl generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192PubMedCrossRefGoogle Scholar
  40. 40.
    Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623PubMedCrossRefGoogle Scholar
  41. 41.
    Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afric J Bot 76:167–179CrossRefGoogle Scholar
  42. 42.
    Klimes A, Neumann MJ, Grant SJ, Dobinson KF (2006) Characterization of the glyoxalase I gene from the vascular wilt fungus Verticillium dahliae. Can J Bot 52:816–822Google Scholar
  43. 43.
    Lin F, Xu J, Shi J, Li H, Li B (2010) Molecular cloning and characterization of a novel glyoxalase I gene TaGlyI in wheat (Triticum aestivum L.). Mol Biol Rep 37:729–735PubMedCrossRefGoogle Scholar
  44. 44.
    Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Overexpression of a single Ca2+ dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327PubMedCrossRefGoogle Scholar
  45. 45.
    Yadav SK, Singla-Pareek SL, Sopory SK (2008) An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23:51–68PubMedCrossRefGoogle Scholar
  46. 46.
    Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 10:25PubMedCrossRefGoogle Scholar
  47. 47.
    Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  48. 48.
    Gapinska M, Skłodowska M, Gabara B (2008) Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30:11–18CrossRefGoogle Scholar
  49. 49.
    Yin L, Mano J, Wang S, Tsuji W, Tanaka K (2010) The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiol 152:1406–1417PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • María Fernanda Álvarez Viveros
    • 1
    • 4
  • Claudio Inostroza-Blancheteau
    • 2
  • Tania Timmermann
    • 3
  • Máximo González
    • 4
  • Patricio Arce-Johnson
    • 1
  1. 1.Departamento de Genética Molecular y Microbiología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos NaturalesEscuela de Agronomía, Universidad Católica de TemucoTemucoChile
  3. 3.Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
  4. 4.Facultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations