Molecular Biology Reports

, Volume 40, Issue 5, pp 3457–3464 | Cite as

Screening for differentially methylated genes among human colorectal cancer tissues and normal mucosa by microarray chip

  • Wei Chen
  • Jun Xiang
  • De-Feng Chen
  • Bei-Bei Ni
  • Hao Chen
  • Xin-Juan Fan
  • Pu-Ning Wang
  • Shun-Xin Song
  • Le-Kun Fang
  • Huan-Yu Xiao
  • Lei WangEmail author
  • Jian-Ping WangEmail author


High density DNA methylation microarrays were used to study the differences of gene methylation level in six pairs of colorectal cancer (CRC) and adjacent normal mucosa. We analyzed the profile of methylated genes by NimbleGen Microarray and the biologic functions by NIH-NAVID. In addition, preliminary validation studies were done in six pairs of samples by MSP (methylation-specific PCR). A total of 4,644 genes had a difference in methylation levels. Among them 2,296 were hypermethylated (log2ratio > 1), 2,348 genes were hypomethylated (log2ratio < −1), in which 293 hypermethylated and 313 hypomethylated genes were unmapped according to the NIH-NAVID. All these genes were randomly distributed on all the chromosomes. However, chromosome 1 contained the most of the hypermethylated genes (232 genes), followed by chromosome 19 (149 genes), chromosome 11 (144 genes), chromosome 2 (141 genes), chromosomes 3 (127 genes). Through the analysis of the statistics, There were 2 hypermethylated/3 hypomethylated genes involved in six pairs of samples simultaneously, followed by 10/14 in five samples, 34/37 in four samples, 101/113 in three samples, 341/377 in two samples, 1,808/1,804 in one sample. According to gene ontology analysis, some physiological processes play important roles in the cell division and the development of tumor, such as apoptosis, DNA repair, immune, cell cycle, cell cycle checkpoint, cell adhesion and invasion etc. Through Preliminary validation, there were two genes (St3gal6, Opcml) in thirty top-ranking genes shown hypermethylated in six pairs of CRC and adjacent normal mucosa. Conclusions High density DNA methylation microarrays is an effective method for screening aberrantly methylated genes in CRC. The methylated genes should be further studied for diagnostic or prognostic markers for CRC.


Methylation Colorectal cancer Microarray Epigenetics 


  1. 1.
    Almeida FF, Araujo SE, Santos FP, Franco CJ, Santos VR, Nahas SC, Habr-Gama A (2000) Colorectal cancer screening. Rev Hosp Clin Fac Med Sao Paulo 55:35–42PubMedGoogle Scholar
  2. 2.
    Denters MJ, Deutekom M, Fockens P, Bossuyt PM, Dekker E (2009) Implementation of population screening for colorectal cancer by repeated fecal occult blood test in the Netherlands. BMC Gastroenterol 9:28PubMedCrossRefGoogle Scholar
  3. 3.
    Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 35:1079–1099CrossRefGoogle Scholar
  4. 4.
    Toyota M, Suzuki H (2010) Epigenetic drivers of genetic alterations. Adv Genet 70:309–323PubMedCrossRefGoogle Scholar
  5. 5.
    Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321PubMedCrossRefGoogle Scholar
  6. 6.
    Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ, Thibodeau SN (1998) Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 58:3455–3460PubMedGoogle Scholar
  7. 7.
    Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS, Rognum TO, Skotheim RI, Thiis-Evensen E, Lothe RA (2008) Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer 7:94PubMedCrossRefGoogle Scholar
  8. 8.
    Aoyagi H, Iida S, Uetake H, Ishikawa T, Takagi Y, Kobayashi H, Higuchi T, Yasuno M, Enomoto M, Sugihara K (2011) Effect of classification based on combination of mutation and methylation in colorectal cancer prognosis. Oncol Rep 25:789–794PubMedGoogle Scholar
  9. 9.
    Lee M, Sup Han W, Kyoung Kim O, Hee Sung S, Sun Cho M, Lee SN, Koo H (2006) Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol Res Pract 202:415–424PubMedCrossRefGoogle Scholar
  10. 10.
    Mittag F, Kuester D, Vieth M, Peters B, Stolte B, Roessner A, Schneider-Stock R (2006) DAPK promotor methylation is an early event in colorectal carcinogenesis. Cancer Lett 240:69–75PubMedCrossRefGoogle Scholar
  11. 11.
    Umetani N, Fujimoto A, Takeuchi H, Shinozaki M, Bilchik AJ, Hoon DS (2004) Allelic imbalance of APAF-1 locus at 12q23 is related to progression of colorectal carcinoma. Oncogene 23:8292–8300PubMedCrossRefGoogle Scholar
  12. 12.
    Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153PubMedCrossRefGoogle Scholar
  13. 13.
    Cadieux B, Ching TT, VandenBerg SR, Costello JF (2006) Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res 66:8469–8476PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang W, Bauer M, Croner RS, Pelz JO, Lodygin D, Hermeking H, Sturzl M, Hohenberger W, Matzel KE (2007) DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene. Dis Colon Rectum 50:1618–1626 Discussion 1626–1627PubMedCrossRefGoogle Scholar
  15. 15.
    Wettergren Y, Odin E, Nilsson S, Carlsson G, Gustavsson B (2008) p16INK4a gene promoter hypermethylation in mucosa as a prognostic factor for patients with colorectal cancer. Mol Med 14:412–421PubMedCrossRefGoogle Scholar
  16. 16.
    Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, Giovannucci EL, Fuchs CS (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 100:1734–1738PubMedCrossRefGoogle Scholar
  17. 17.
    Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg, D, Malik S, Pan F, Noushmehr H, van Dijk CM, Tollenaar RA, Laird PW (2012) Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 22: 271-82PubMedCrossRefGoogle Scholar
  18. 18.
    Kim YH, Lee HC, Kim SY, Yeom YI, Ryu KJ, Min BH, Kim DH, Son HJ, Rhee PL, Kim JJ, Rhee JC, Kim HC, Chun HK, Grady WM, Kim YS (2011) Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations. Ann Surg Oncol 18:2338–2347PubMedCrossRefGoogle Scholar
  19. 19.
    Schuebel KE, Chen W, Cope L, Glockner SC, Suzuki H, Yi JM, Chan TA, Van Neste L, Van Criekinge W, van den Bosch S, van Engeland M, Ting AH, Jair K, Yu W, Toyota M, Imai K, Ahuja N, Herman JG, Baylin SB (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3:1709–1723PubMedCrossRefGoogle Scholar
  20. 20.
    Estecio MR, Yan PS, Ibrahim AE, Tellez CS, Shen L, Huang TH, Issa JP (2007) High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res 17:1529–1536PubMedCrossRefGoogle Scholar
  21. 21.
    Mori Y, Cai K, Cheng Y, Wang S, Paun B, Hamilton JP, Jin Z, Sato F, Berki AT, Kan T, Ito T, Mantzur C, Abraham JM, Meltzer SJ (2006) A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology 131:797–808PubMedCrossRefGoogle Scholar
  22. 22.
    Pardini B, Naccarati A, Polakova V, Smerhovsky Z, Hlavata I, Soucek P, Novotny J, Vodickova L, Tomanova V, Landi S, Vodicka P (2009) NBN 657del5 heterozygous mutations and colorectal cancer risk in the Czech Republic. Mutat Res 666:64–67PubMedCrossRefGoogle Scholar
  23. 23.
    Wang P, Tang JT, Peng YS, Chen XY, Zhang YJ, Fang JY (2010) XRCC1 downregulated through promoter hypermethylation is involved in human gastric carcinogenesis. J Dig Dis 11:343–351PubMedCrossRefGoogle Scholar
  24. 24.
    Stoehlmacher J, Park DJ, Zhang W, Yang D, Groshen S, Zahedy S, Lenz HJ (2004) A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br J Cancer 91:344–354PubMedGoogle Scholar
  25. 25.
    Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I, Gonzalez S, Guino E, Capella G, Canzian F (2006) Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res 12:2101–2108PubMedCrossRefGoogle Scholar
  26. 26.
    Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD (2004) The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene 23:9432–9437PubMedCrossRefGoogle Scholar
  27. 27.
    Chim CS, Wong KY, Loong F, Srivastava G (2005) Absence of ATM hypermethylation in mantle cell and follicular lymphoma. Leukemia 19:880–882PubMedCrossRefGoogle Scholar
  28. 28.
    Ye F, Zhang SF, Xie X, Lu W (2008) GOPCML gene promoter methylation and gene expression in tumor and stroma cells of invasive cervical carcinoma. Cancer Invest 26:569–574PubMedCrossRefGoogle Scholar
  29. 29.
    Liu WJ, Wang L, Wang JP, Li JQ, Zhang CQ, Zheng L, Yuan YF (2006) Correlations of CpG island methylator phenotype and OPCML gene methylation to carcinogenesis of hepatocellular carcinoma. Ai Zheng 25:696–700PubMedGoogle Scholar
  30. 30.
    Reed JE, Dunn JR, du Plessis DG, Shaw EJ, Reeves P, Gee AL, Gee AL, Warnke PC, Sellar G, CMoss DJ, Walker C (2007) Expression of cellular adhesion molecule ‘OPCML’ is down-regulated in gliomas and other brain tumours. Neuropathol Appl Neurobiol 33:77–85PubMedCrossRefGoogle Scholar
  31. 31.
    Kawamura YI, Toyota M, Kawashima R, Hagiwara T, Suzuki H, Imai K, Shinomura Y, Tokino T, Kannagi R, Dohi T (2008) DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology 135:142–151PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wei Chen
    • 1
  • Jun Xiang
    • 1
  • De-Feng Chen
    • 1
  • Bei-Bei Ni
    • 2
  • Hao Chen
    • 1
  • Xin-Juan Fan
    • 2
  • Pu-Ning Wang
    • 1
  • Shun-Xin Song
    • 1
  • Le-Kun Fang
    • 1
  • Huan-Yu Xiao
    • 3
  • Lei Wang
    • 1
    Email author
  • Jian-Ping Wang
    • 1
    Email author
  1. 1.Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat-sen UniversityGuangzhouChina
  3. 3.Sun Yat-sen UniversityGuangzhouChina

Personalised recommendations