Molecular Biology Reports

, Volume 40, Issue 3, pp 2369–2388 | Cite as

Blast resistance in rice: a review of conventional breeding to molecular approaches

  • G. Miah
  • M. Y. RafiiEmail author
  • M. R. Ismail
  • A. B. Puteh
  • H. A. Rahim
  • R. Asfaliza
  • M. A. Latif


Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast resistant rice variety through marker assisted selection.


Blast disease Conventional breeding Tissue culture Molecular approaches 



The authors would like to acknowledge Longterm Research Grant Scheme (LRGS), Food Security Project, Ministry of Higher Education, Malaysia, for the financial support to conduct research activities on rice breeding.


  1. 1.
    Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6. doi: 10.1007/s11103-005-2159-5 PubMedCrossRefGoogle Scholar
  2. 2.
    Latif MA, Rahman MM, Kabir MS, Ali MA, Islam MT, Rafii MY (2011) Genetic diversity analyzed by quantitative traits among rice (Oryza sativa L.) genotypes resistant to blast disease. Afr J Microbiol Res 5(25):4383–4391. doi: 10.5897/AJMR11.492 Google Scholar
  3. 3.
    Selvaraj CI, Nagarajan P, Thiyagarajan K, Bharathi M, Rabindran R (2011) Studies on heterosis and combining ability of well known blast resistant rice genotypes with high yielding varieties of rice (Oryza sativa L.). Int J Plant Breed Genet 5(2):111–129. doi: 10.3923/ijpbg.2011.111.129 CrossRefGoogle Scholar
  4. 4.
    Khush GS, Jena KK (2009) Current status and future prospects for research on blast resistance in rice (Oryza sativa L.). In: Wang GL, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, Dordrecht, pp 1–10. doi: 10.1007/978-1-4020-9500-9 CrossRefGoogle Scholar
  5. 5.
    Kwon JO, Lee SG (2002) Real-time micro-weather factors of growing field to the epidemics of rice blast. Res Plant Dis 8:199–206 (in Korean, English abstract)CrossRefGoogle Scholar
  6. 6.
    Li YB, Wu CJ, Jiang GH, Wang LQ, He YQ (2007) Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects. Plant Breeding 126:541–547. doi: 10.1111/j.1439-0523.2007.01409.x CrossRefGoogle Scholar
  7. 7.
    Scheuermann KK, Raimondi JV, Marschalek R, de Andrade A, Wickert E (2012) Magnaporthe oryzae genetic diversity and its outcomes on the search for durable resistance. Mol Basis Plant Genet Divers 331–356. doi:  10.5772/33479
  8. 8.
    Latif MA, Badsha MA, Tajul MI, Kabir MS, Rafii MY, Mia MAT (2011) Identification of genotypes resistant to blast, bacterial leaf blight, sheath blight and tungro and efficacy of seed treating fungicides against blast disease of rice. Sci Res Essays 6(13):2804–2811. doi: 10.5897/SRE11.315 Google Scholar
  9. 9.
    Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434PubMedGoogle Scholar
  10. 10.
    Jeger MJ, Pautasso M, Holdenrieder O, Shaw MW (2007) Modelling disease spread and control in networks: implications for plant sciences. New Phytol 174:279–297PubMedCrossRefGoogle Scholar
  11. 11.
    Abe S (2004) Breeding of a blast resistant multiline variety of rice, Sasanishiki BL. Jpn Agric Res Q 38:149–154Google Scholar
  12. 12.
    Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, Mew TW, Teng PS, Wang ZH, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722. doi: 10.1038/35021046 PubMedCrossRefGoogle Scholar
  13. 13.
    Bonman JM, Khush GS, Nelson RJ (1992) Breeding rice for resistance to pests. Ann Rev Phytopathol 30:507–528. doi: 10.1146/ CrossRefGoogle Scholar
  14. 14.
    Dai L, Liu X, Xiao Y, Wang G (2007) Recent advances in cloning and characterization of disease resistance genes in rice. J Integr Plant Biol 49(1):112–119. doi: 10.1111/j.1744-7909.2006.00413.x CrossRefGoogle Scholar
  15. 15.
    Manandhar HK, Lyngs Jorgensen HJ, Mathur SB, Smedegaard-Peterson V (1998) Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the non-rice pathogen Bipolaris sorokiniana. Phytopathology 88:735–739. doi: 10.1094/PHYTO.1998.88.7.735 PubMedCrossRefGoogle Scholar
  16. 16.
    Narayanan NN, Baisakh N, Vera Cruz CM, Gnanamanickam SS, Datta K, Datta SK (2002) Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50. Crop Sci 42(6):2072–2079. doi: 10.2135/cropsci2002.2072 CrossRefGoogle Scholar
  17. 17.
    Wang B, Zhu C, Liu X, Wang W, Ding H, Jiang M, Li G, Liu W, Ya F (2011) Fine mapping of qHD4-1, a QTL controlling the heading date, to a 20.7-kb DNA fragment in rice (Oryza sativa L.). Plant Mol Biol Rep 29:702–713. doi: 10.1007/s11105-010-0278-x CrossRefGoogle Scholar
  18. 18.
    Swamy BPM, Sarla N (2011) Meta-analysis of yield QTLS derived from inter-specific crosses of rice reveals consensus regions and candidate genes. Plant Mol Biol Rep 29(3):663–680. doi: 10.1007/s11105-010-0274-1 CrossRefGoogle Scholar
  19. 19.
    Zhao F, Cai Z, Hu T, Yao H, Wang L, Dong N, Wang B, Ru Z, Zhai W (2010) Genetic analysis and molecular mapping of a novel gene conferring resistance to rice stripe virus. Plant Mol Biol Rep 28(3):512–518. doi: 10.1007/s11105-009-0178-0 CrossRefGoogle Scholar
  20. 20.
    Hayashi K, Yoshida H, Ashikawa I (2006) Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet 113:251–260. doi: 10.1007/s00122-006-0290-6 PubMedCrossRefGoogle Scholar
  21. 21.
    Latif MA, Rafii MY, Rahman MM, Talukdar MRB (2011) Microsatellite and minisatellite markers based DNA fingerprinting and genetic diversity of blast and ufra resistant genotypes. CR Biol 334:282–289. doi: 10.1016/j.crvi.2011.02.003 CrossRefGoogle Scholar
  22. 22.
    Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55. doi: 10.1007/s11032-005-3445-2 CrossRefGoogle Scholar
  23. 23.
    Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113:361–368. doi: 10.1007/s00122-006-0305-3 PubMedCrossRefGoogle Scholar
  24. 24.
    Suwarno, Lubis E, Soenarjo E (2001) Breeding of upland rice for resistance to blast in Indonesia. In: Kardin MK, Prasadja I, Syam M (eds) Upland rice research in Indonesia current status and future direction. Central Research Institute for Food Crops, Agency for Agricultural Research and Development, Bogor, pp 7–14Google Scholar
  25. 25.
    Lopez-Gerena J (2006) Mapping QTL controlling durable resistance to rice blast in the cultivar Oryzica Llanos 5. Ph.D. thesis, Universidad del Valle, Plant Pathology College of Agriculture, Cali, Colombia and Kansas State University, Manhatten, KS, USAGoogle Scholar
  26. 26.
    Talukder ZI, Tharreau D, Price AH (2004) Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytol 162:197–209. doi: /10.1111/j.1469-8137.2004.01010.x/pdf CrossRefGoogle Scholar
  27. 27.
    Han SS, Ryu JD, Shim HS, Lee SW, Hong YK, Cha KH (2001) Breakdown of resistant cultivars by new race KI-1117a and race distribution of rice blast fungus during 1999–2000 in Korea. Res Plant Dis 7:86–92 (in Korean, English summary)Google Scholar
  28. 28.
    Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G, White FF, Yin Z (2005) R gene expression induced by a type-II effector triggers disease resistance in rice. Nature 435:1122–1125. doi: 10.1038/nature03630 PubMedCrossRefGoogle Scholar
  29. 29.
    Khush GS (1989) Multiple disease and insect resistance for increased yield stability in rice. In: Progress in irrigated rice research. International Rice Research Institute, Manila, Philippines, pp 79–92. Record Number 19901144320Google Scholar
  30. 30.
    Khush GS (1978) Breeding methods and procedures employed at IRRI for developing rice germ plasm with multiple resistance to diseases and insects. In: Symposium on methods of crop breeding. Tropical Agricultural Research Series, vol 11, pp 69–76Google Scholar
  31. 31.
    Jensen NF (1970) A diallel selective mating system for cereal breeding. Crop Sci 10(6):629–635CrossRefGoogle Scholar
  32. 32.
    Allard RW (1960) Principles of plant breeding. Wiley, New YorkGoogle Scholar
  33. 33.
    Allard RW (1999) Principles of plant breeding, 2nd edn. Wiley, New YorkGoogle Scholar
  34. 34.
    Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ (2008) Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 49(5):476–484. doi: 10.1139/g06-005 CrossRefGoogle Scholar
  35. 35.
    Joseph M, Gopalakrishnan S, Sharma RK, Singh VP, Singh AK, Singh NK, Mohapatra T (2004) Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol Breed 13(4):377–387. doi: 10.1023/B:MOLB.0000034093.63593.4c CrossRefGoogle Scholar
  36. 36.
    Toojinda T, Tragoonrung S, Vanavichit A, Siangliw JL, Pa-In N, Jantaboon J, Siangliw M, Fukai S (2005) Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod Sci 8(3):330–333CrossRefGoogle Scholar
  37. 37.
    Sreewongchai T, Toojinda T, Thanintorn N, Kosawang C, Vanavichit A, Tharreau D, Sirithunya P (2010) Development of elite indica rice lines with wide spectrum of resistance to Thai blast isolates by pyramiding multiple resistance QTLs. Plant Breed 129:176–180. doi: 10.1111/j.1439-0523.2009.01669.x CrossRefGoogle Scholar
  38. 38.
    Fujimaki H (1979) Recurrent selection by using male sterility for rice improvement. Jpn Agric Res Q 13(3):153–156Google Scholar
  39. 39.
    Guimarães EP, Correa-Victoria F (2000) Use of recurrent selection for develop resistance Pyricularria grisea Sacc. on rice. In: Guimarães EP (ed) Advances in rice population improvement. Embrapa Rice and Beans, Santo Antonio de Goias, pp 165–175Google Scholar
  40. 40.
    Courtois B, Nelson R, Roumen E (1997) Creation of a gene pool to improve Piricularia on Resistance partial secanano rice through recurrent selection. In: Guimarães EP (ed) Recurrent selection in rice. International Center for Tropical Agriculture, Cali, pp 189–202Google Scholar
  41. 41.
    Rangel PHN, Cordeiro ACC, Lopes SIG, de Morais OP, Brondani C, Brondani RPV, Yokoyama S, Schiocchet M, Bacha R, Ishy T (2005) Advances in population improvement of irrigated rice in Brazil. In: Guimarães EP (ed) Population improvement, a way of exploiting rice genetic resources in Latin America. Food and Agriculture Organization of the United Nations (FAO), Rome, pp 145–186Google Scholar
  42. 42.
    de Badan AC, Guimarães EP, Ramis C (2005) Genetic gain for resistance to blast in a rice population. In: Guimarães EP (ed) Population improvement, a way of exploiting rice genetic resources in Latin America. Food and Agriculture Organization of the United Nations (FAO), Rome, pp 299–329Google Scholar
  43. 43.
    Shu QY (2009) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 425–427Google Scholar
  44. 44.
    Khambanonda P (1978) Mutation breeding in rice for high yield and better blast resistance. Thai Agric Sci 11(4):263–271. ISSN: 0049-3589Google Scholar
  45. 45.
    Kaur S, Padmanabhan SY, Rao M (1975) Induction of resistance to blast disease (Pyricularia oryzae) in the high yielding variety, Ratna (IRE × TKM 6). In: Proceedings of the IAEA research coordination Geoling, Ames, Iowa, pp 141–145Google Scholar
  46. 46.
    Zhang MX, Xu JL, Luo RT, Shi De, Li ZK (2003) Genetic analysis and breeding use of blast resistance in a japonica rice mutant R917. Euphytica 130(1):71–76. doi: 10.1023/A:1022380626371 CrossRefGoogle Scholar
  47. 47.
    Gangadharan C, Mathur SC (1976) Di-ethyl sulphate induced blast resistant mutants in rice variety Mtu. 17. Sci Cult 42(4):226–228Google Scholar
  48. 48.
    Hadzim K, Ajimilah NH, Othman O, Arasu NT, Latifah A, Saad A (1988) Mutant Mahsuri: Baka untuk beras bermutu. Teknol Padi 4:7–13 (English abstract)Google Scholar
  49. 49.
    Azlan S, Alias I, Saad A, Habibuddin H (2004) Performance of potential mutant lines of MR 180. In: Sivaprasagam et al. (eds) Modern rice farming. Proceedings of the international rice conference Serdang, Malaysia: MARDI, 2003, pp 293–296Google Scholar
  50. 50.
    Mohamad O, Nazir BM, Alias I, Azlan S, Abdul Rahim H, Abdullah MZ, Othman O, Hadzim K, Saad A, Habibuddin H, Golam F (2006) Development of improved rice varieties through the use of induced mutations in Malaysia. Plant Mutat Rep 1(1):27–33. ISSN: 1011-260XGoogle Scholar
  51. 51.
    Shu Q, Wu D, Xia Y (1997) The most widely cultivated rice variety ‘Zhefu 802’ in China and its geneology. MBNL 43:3–5Google Scholar
  52. 52.
    Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135(2):187–204. doi: 10.1023/B:EUPH.0000014914.85465.4f CrossRefGoogle Scholar
  53. 53.
    Kiyosawa S (1982) Gene analysis for blast resistance. Oryza 18:196–203Google Scholar
  54. 54.
    Koizumi S (2007) Durability of resistance to rice blast disease. JIRCAS Working Rep 53:1–10Google Scholar
  55. 55.
    Korinsaka S, Sirithunyab P, Meakwatanakarnd P, Sarkarunge S, Vanavichitc A, Toojindaa T (2011) Changing allele frequencies associated with specific resistance genes to leaf blast in backcross introgression lines of Khao Dawk Mali 105 developed from a conventional selection program. Field Crops Res 122:32–39. doi: 10.1016/j.fcr.2011.02.005 CrossRefGoogle Scholar
  56. 56.
    Liu WG, Jin SJ, Zhu XY, Wang F, Li JH, Liu ZR, Liao YL, Zhu MS, Huang HJ, Liu YB (2008) Improving blast resistance of a thermo-sensitive genic male sterile rice line GD-8S by molecular marker-assisted selection. Rice Sci 15(3):179–185. doi: 10.1016/S1672-6308(08)60040-2 CrossRefGoogle Scholar
  57. 57.
    Nottegham JL (1993) Durable resistance to blast disease. In: Jacobs Th, Parlievliet JE (eds) Durability of disease resistance. Kluwer, London, pp 125–134CrossRefGoogle Scholar
  58. 58.
    van der Plank JE (1975) Horizontal resistance: six suggested projects in relation to blast disease in rice. In: Horizontal resistant to blast disease in rice, pp 21–26. CIAT Serie, CE-9, Cali, ColombiaGoogle Scholar
  59. 59.
    Bidaux JM (1976) IRAT. Rice pathology. Annual report BP 636, Bouake, Ivory CoastGoogle Scholar
  60. 60.
    Villareal RL (1980) Slow leaf blast infection in rice (Oryza sativa L.) p 123. Ph.D thesis, Pennsylvania University, USAGoogle Scholar
  61. 61.
    Centre International de Agricultural Tropical (CIAT) (1982) Annual Report. P128, Cali, ColombiaGoogle Scholar
  62. 62.
    Leung H, Zhu Y, Resulla-Molina I, Fan JX, Chen H, Pangga I, Vera Cruz C, Mew TW (2003) Using genetic diversity to achieve sustainable rice disease management. Plant Dis 87(10):1156–1169 (Publication no. D-2003-0808-01F)CrossRefGoogle Scholar
  63. 63.
    Zhu YY, Fang H, Wang YY, Fan JX, Yang SS, Mew TW, Mundt CC (2005) Panicle blast and canopy moisture in rice cultivar mixtures. Phytopathology 95:433–438. doi: 10.1094/PHYTO-95-0433 PubMedCrossRefGoogle Scholar
  64. 64.
    Higashi T, Sato H, Horisue N, Fujimaki H (1981) Breeding of isogenic lines for blast resistance in rice. 1. Comparison of characters between B4F2 lines and their recurrent, “Nipponbare”. Breed Sci 31((Supp. 1)):46 (in Japanese)Google Scholar
  65. 65.
    Horisue N, Higashi T, Sato H, Koizumi S (1984) Breeding of isogenic lines for blast resistance in rice. 2. Agronomical characteristics of kanto-IL1-14. Breed Sci 34((Supp. 1)):316 (in Japanese)Google Scholar
  66. 66.
    Nakajima T (1994) Mechanism of rice blast disease control by multilines. J Agric Sci 49:390–395 (in Japanese)Google Scholar
  67. 67.
    Matsunaga K (1996) Breeding of a multiline rice cultivar “Sasanishiki BL” and its use for control of blast disease in Miyagi prefecture. J Agric Sci 51:173–176 (in Japanese)Google Scholar
  68. 68.
    Ise K (1990) Effect of mixing planting of near isogenic lines of ‘Nippobare’ rice to reduce blast disease. Breed Sci 40(Supp. 1):288 (in Japanese)Google Scholar
  69. 69.
    Koizumi S, Fuji S (1994) Variation of field resistance to leaf blast in a rice strain, Chubu 32, due to isolates of the pathogen. Res Bull Aichi Agric Res Cent 27:85–93Google Scholar
  70. 70.
    Koizumi S, Tani T, Fuji S (1996) Control of rice blast by multilines. J Agric Sci 51:89–93 (in Japanese)Google Scholar
  71. 71.
    Nakajima T, Sonoda R, Yaegashi H (1996) Effect of a multiline of rice cultivar Sasanishiki and its isogenic lines on suppressing rice blast disease. Ann Phytopathol Soc Jpn 62(3):227–233CrossRefGoogle Scholar
  72. 72.
    Nakajima T, Sonoda R, Yaegashi H, Saito H (1996) Factors related to suppression of leaf blast disease with a multiline of rice cultivar Sasanishiki and its isogenic lines. Ann Phytopathol Soc Jpn 62(4):360–364CrossRefGoogle Scholar
  73. 73.
    Tsuji H, Sasahara M, Kanno H, Ohba A, Kanagawa M (1999) Change of pathogenic races of rice blast fungus on multiline cultivars ‘Sasanishiki BL’ in recent years. Ann Rep Plant Prot North Jpn 50:16–20 (in Japanese)Google Scholar
  74. 74.
    Ashizawa T, Zenbayashi K, Koizumi S (2001) Development of a simulation model for forecasting rice blast epidemics in multiline. Jpn J Phytopathol 67:194 (abstract in Japanese)Google Scholar
  75. 75.
    Ishizaki K, Hoshi T, Abe S, Sasaki Y, Kobayashi K, Kasaneyama H, Matsui T, Azuma S (2005) Breeding of blast resistant isogenic lines in rice variety “Koshihikara” and evaluation of their characters. Breed Sci 55(3):371–377. doi: 10.1270/jsbbs.55.371 CrossRefGoogle Scholar
  76. 76.
    Lin XH, Zhang DP, Xie YF, Gao HP, Zhang QF (1995) Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP markers. Phytopathology 86:1156–1159 Publication No. P-1996-0913-01RCrossRefGoogle Scholar
  77. 77.
    Koide Y, Kobayashi N, Xu D, Fukuta Y (2009) Resistance genes and selection DNA markers for blast disease in rice (Oryza sativa L.). JARQ 43(4):255–280. Google Scholar
  78. 78.
    Liu G, Lu G, Zeng L, Wang GL (2002) Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics 267(4):472–480. doi: 10.1007/s00438-002-0677-2 PubMedCrossRefGoogle Scholar
  79. 79.
    Zhu X, Yang Q, Yang J, Lei C, Wang J, Ling Z (2004) Differentiation ability of monogenic lines to Magnaporthe grisea in indica rice. Acta Phytopathol Sin 34:361–368 (in Chinese with English abstract)Google Scholar
  80. 80.
    Jeung J, Kim B, Cho Y, Han S, Moon H, Lee Y, Jena K (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115(8):1163–1177. doi: 10.1007/s00122-007-0642-x PubMedCrossRefGoogle Scholar
  81. 81.
    Liu X, Yang Q, Lin F, Hua L, Wang C, Wang L, Pan Q (2007) Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol Genet Genomics 278(4):403–410. doi: 10.1007/s00438-007-0258-5 PubMedCrossRefGoogle Scholar
  82. 82.
    Li W, Lei C, Cheng Z, Jia Y, Huang D, Wang J, Wang J, Zhang X, Su N, Guo X, Zhai H, Wan J (2008) Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol Breeding 22(1):141–149. doi: 10.1007/s11032-008-9163-9 CrossRefGoogle Scholar
  83. 83.
    Yang JY, Chen S, Zeng LX, Li YL, Chen Z, Li CY, Zhu XY (2008) Race specificity of major rice blast resistance genes to Magnaporthe grisea isolates collected from indica rice in Guangdong, China. Rice Sci 15:311–318CrossRefGoogle Scholar
  84. 84.
    Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180(4):2267–2276. doi: 10.1534/genetics.108.095034 PubMedCrossRefGoogle Scholar
  85. 85.
    Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57(3):413–425. doi: 10.1111/j.1365-313X.2008.03694.x PubMedCrossRefGoogle Scholar
  86. 86.
    Zapata-Arias FJ, Torrizo LB, Ando A (1995) Current developments in plant biotechnology for genetic improvement: the case of rice (Oryza sativa L.). World J Microbiol Biotechnol 11(4):393–399. doi: 10.1007/BF00364614 CrossRefGoogle Scholar
  87. 87.
    Larkin PJ, Scowcroft WR (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60(4):197–214. doi: 10.1007/BF02342540 CrossRefGoogle Scholar
  88. 88.
    El-Kazzaz AA (2001) Inheritance of resistance to Fusarium oxysporum f.sp. lycopersici in F2 tomato plants via tissue culture. Egypt J Genet Cytol 30:51–59Google Scholar
  89. 89.
    El-Kazzaz AA, EL-Mougy NS (2001) Inheritance of disease resistance in cucumber plants to root rot caused by Fusarium solani using tissue culture techniques. Egypt J Phytopathol 29:57–68Google Scholar
  90. 90.
    El-Kazzaz AA, Ashour AMA (2004) Genetically resistant cucumber plants to wilt pathogen via tissue cultures. Egypt J Phytopathol 32:1–10Google Scholar
  91. 91.
    Pachon JG (1989) Evaluation of the potential use of somaclonal variation in the improvement of some characters of economic importance in rice (Oryza sativa L.). Pontificia Universidad Javeriana, Bogota, p 94Google Scholar
  92. 92.
    Bouharmon J, Dekeyser A, Van Sint Jan V, Dogbe YS (1991) Application of somaclonal variation and in vitro selection to rice improvement. In: Rice genetics II, proceedings of the second international rice genetics symposium, 14–18 May 1990, International Rice Research Institute, Philippines, pp 271–277Google Scholar
  93. 93.
    Araújo LG, Prabhu AS, Freire AB (1997) Variação somaclonal na cultivar de arroz IAC-47 para resistência à brusone. Fitopatol Bras Brasília 22(2):125–130Google Scholar
  94. 94.
    Evans DA, Sharp WR, Medina-Filho HP (1984) Somaclonal and gametoclonal variation. Am J Bot 71:759–774. Google Scholar
  95. 95.
    de Araújo GL, Prabhu AS (2002) Blast resistant somaclones of aromatic rice cultivar Basmati-370. Pesq Agropec Bras Brasília 37(8):1127–1135. doi: 10.1590/S0100-204X2002000800010 CrossRefGoogle Scholar
  96. 96.
    Araújo GL, Prabhu AS, Freire AB (2000) Development of blast resistant somaclones of the upland rice cultivar Araguaia. Pesq Agropec Bras Brasília 35(2):357–367. doi: 10.1590/S0100-204X2000000200015 CrossRefGoogle Scholar
  97. 97.
    El-Kazzaz AA, Hanafy MS, Abdel-Kader MM (2009) In vitro selection of resistant rice plants against rice blast caused by Pyricularia oryzae via tissue culture technique. Arch Phytopathol Plant Prot 42(9):847–856. doi: 10.1080/03235400701492715 CrossRefGoogle Scholar
  98. 98.
    McCouch SR, Nelson RJ, Tohme J, Zeigler RS (1994) Mapping of blast resistance gens in rice. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. International Rice Research Institute, CAB International, Wallingford, pp 167–186. ISBN 0851989357Google Scholar
  99. 99.
    Paterson AH, Damon S, Hewitt JD, Zamir D, Rabmowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127(1):181–197PubMedGoogle Scholar
  100. 100.
    Abenes MLP, Angeles ER, Khush GS, Huang N (1993) Selection of bacterial blight resistant plants in the F2 generation via their linkage to molecular markers. Rice Genet Newsl 10:120–123Google Scholar
  101. 101.
    McCouch SR, Kochert G, Yu ZH, Wang ZY, Coffiman R, Khush GS, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76(6):815–829. doi: 10.1007/BF00273666 CrossRefGoogle Scholar
  102. 102.
    Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu KS, Xiao JH, Yu ZH, Ronald PC, Harrington SE, Second G, McCouch S, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138(4):1251–1274PubMedGoogle Scholar
  103. 103.
    Mackill DJ, Salam MA, Wang ZY, Tanksley SD (1993) A major photoperiod sensitivity gene tagged with RFLP and isozyme markers in rice. Theor Appl Genet 85(5):536–540. doi: 10.1007/BF00220910 CrossRefGoogle Scholar
  104. 104.
    Inukai T, Mackill DJ, Bonmann JM, satkarung S, Zeigler R, Nelson R, takamure I, Kinoshita T, takamure I, Kinoshita T (1992) Blast resistance genes Pi-2(t) and Pi-z may be allelic. Rice Genet Newsl 9:90–92Google Scholar
  105. 105.
    van der Plank JE (1968) Disease resistance in plants. Academic Press, New YorkGoogle Scholar
  106. 106.
    Ou SH, Nuque FL, Bandong JM (1975) Relationship between qualitative and quantitative resistance in rice blast. Phytopathology 65:1315–1316. ISSN: 0031-949XGoogle Scholar
  107. 107.
    Parlevliet JE (1979) Components of resistance that reduce the rate of epidemic development. Annu Rev Phytopathol 17:203–222. doi: 10.1146/ CrossRefGoogle Scholar
  108. 108.
    McDonald B, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124(2):163–180. doi: 10.1023/A:1015678432355 CrossRefGoogle Scholar
  109. 109.
    Roumen EC (1994) A strategy for accumulating genes for partial resistance to blast disease in rice within a conventional breeding program. In: Zeigler RS, Leong S, Teng P (eds) Rice blast disease. CAB International/IRRI, Madison, pp 245–265Google Scholar
  110. 110.
    Kongprakhon P, Cuesta-Marcos A, Hayes PM, Hongtrakul V, Sirithunya P, Toojinda T, Sangduen N (2010) Four QTL in rice associated with broad spectrum resistance to blast isolates from rice and barley. J Phytopathol 158(2):125–131. doi: 10.1111/j.1439-0434.2009.01587.x CrossRefGoogle Scholar
  111. 111.
    Inukai T, Vales MI, Hori K, Sato K, Hayes PM (2006) RMo1 confers blast resistance in barley and is located within the complex of resistance genes containing Mla, a powdery mildew resistance gene. Mol Plant Microbe Interact 19(9):1034–1041. doi: 10.1094/MPMI-19-1034 PubMedCrossRefGoogle Scholar
  112. 112.
    Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes via DNA marker-aided selection in rice. Theor Appl Genet 95(3):313–320. doi: 10.1007/s001220050565 CrossRefGoogle Scholar
  113. 113.
    Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucinerice repeat class of plant disease resistance genes. Plant J 19(1):55–64. doi: 10.1046/j.1365-313X.1999.00498.x PubMedCrossRefGoogle Scholar
  114. 114.
    Wu JL, Sinha PK, Varivar M, Zheng KL, Leach JE, Courtois B, Leung H (2004) Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet 108(6):1024–1032. doi: 10.1007/s00122-003-1528-1 PubMedCrossRefGoogle Scholar
  115. 115.
    Bryan GT, Wu KS, Farrall L, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12(11):2033–2046. doi: 10.1105/tpc.12.11.2033 PubMedGoogle Scholar
  116. 116.
    Sharma TR, Madhav MS, Singh BK (2005) High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol Gen Genomics 274(6):569–578. doi: 10.1007/s00438-005-0035-2 CrossRefGoogle Scholar
  117. 117.
    Lin F, Liu Y, Wang L, Liu X, Pan Q (2007) A high-resolution map of the rice blast resistance gene Pi15 constructed by sequence ready markers. Plant Breed 126(3):287–290. doi: 10.1111/j.1439-0523.2007.01352.x CrossRefGoogle Scholar
  118. 118.
    Zhou E, Jia Y, Lee FN, Lin M, Jia M, Correll JC, Cartwright RD (2005) Evidence of the instability of a telomeric Magnaporthe grisea avirulence gene AVR-Pita in the US. Phytopathology 95(6):118Google Scholar
  119. 119.
    Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes an NBS-LRR protein and is a member of a multigene family in rice. Genetics 172(3):1901–1914. doi: 10.1534/genetics.105.044891 PubMedCrossRefGoogle Scholar
  120. 120.
    Chen J, Henny R, Devanand P, Chao C (2006) AFLP analysis of nephthytis (Syngonium podophyllum Schott) selected from somaclonal variants. Plant Cell Rep 24(12):743–749. doi: 10.1007/s00299-005-0032-2 PubMedCrossRefGoogle Scholar
  121. 121.
    Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiledcoiled-nucleotide-binding site-leucine-rich repeat gene that confers race specific resistance to the blast fungus. Genetics 176:2541–2549PubMedCrossRefGoogle Scholar
  122. 122.
    Zhuang JY, Chai RY, Ma WB, Lu J, Jin MZ, Zheng KL (1997) Genetic analysis of the blast resistance gene at vegetative and reproductive stages in rice. Rice Genet Newsl 14:62–64Google Scholar
  123. 123.
    Wu KS, Martinez C, Lentini Z, Tohme J, Chumley FG, Scolnik PA, Valent B (1996) Cloning a blast resistance gene by chromosome walking. In: Khush GS (ed) Rice genetics III. Proceeding of the third international rice genetics symposium. International Rice Research Institute, Manila, Philippines, pp 669–674Google Scholar
  124. 124.
    Tabien RE, Li Z, Paterson AH, Marchetti MA, Stansel JW, Pinson SRM (2000) Mapping of four major rice blast resistance genes from ‘Lemont’ and ‘Teqing’ and evaluation of their combinatorial effect for field resistance. Theor Appl Genet 101(8):1215–1225. doi: 10.1007/s001220051600 CrossRefGoogle Scholar
  125. 125.
    Inukai T, Nelson RJ, Zeigler RS, Sarkarung S, Mackill DJ (1994) Allelism of blast resistance genes in near-isogenic lines of rice. Phytopathology 84(11):1278–1283. doi: 10.1094/Phyto-84-1278 CrossRefGoogle Scholar
  126. 126.
    Ahn SN, Kim YK, Hong HC, Han SS, Choi HC, McCouch SR, Moon HP (1997) Mapping of genes conferring resistance to Korean isolates of rice blast fungus using DNA markers. Korean J Breed 29(4):416–423Google Scholar
  127. 127.
    Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Garsmeur SO, Ghesquiere A, Notteghem JL (2003) Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106(5):794–803. doi: 10.1007/s00122-002-1088-9 PubMedGoogle Scholar
  128. 128.
    Zheng KL, Zhuang JY, Lu J, Qian HR, Lin HX (1996) Identification of DNA markers tightly linked to blast resistance genes in rice. In: Khush GS (ed) Rice genetics III. Proceeding of the third international rice genetics symposium. International Rice Research Institute, Manila, Philippines, pp 565–569Google Scholar
  129. 129.
    Jia YL, Wang ZH, Singh P (2002) Development of dominant rice blast Pi-ta resistance gene markers. Crop Sci 42:2145–2149CrossRefGoogle Scholar
  130. 130.
    Nakamura S, Asakawa S, Ohmido N, Fukui K, Shimizu N, Kawasaki S (1997) Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representive rice BAC library. Mol Gen Genet 254(6):611–620. doi: 10.1007/s004380050459 PubMedCrossRefGoogle Scholar
  131. 131.
    Fjellstrom R, Conaway-Bormans CA, McClung AM, Marchetti MA, Shank AR, Park WD (2004) Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci 44(5):1790–1798. doi: 10.2135/cropsci2004.1790 CrossRefGoogle Scholar
  132. 132.
    Hayashi N, Ando I, Naito H (1996) Gene analysis of a new blast resistance in the paddy rice variety, Aichi Asahi. Breed Sci 46(Suppl 2):168 (in Japanese)Google Scholar
  133. 133.
    Hayashi N, Ando I, Imbe T (1998) Identification of a new resistance gene to a Chinese blast fungus isolate in the Japanese rice cultivar Aichi Asahi. Phytopathology 88:822–827 (Publication no. P-1998-0622-02R)PubMedCrossRefGoogle Scholar
  134. 134.
    Iwata N (1997) Registration of new gene symbols. Rice Genet Newsl 14:9–11Google Scholar
  135. 135.
    Imbe T, Ora S, Yanoria MJT, Tsunematsu H (1997) A new gene for blast resistance in rice cultivar, IR24. Rice Genet Newsl 14:60–62Google Scholar
  136. 136.
    Liu XQ, Wang L, Chen S, Lin F, Pan QH (2005) Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Gen Genet 274(4):394–401. doi: 10.1007/s00438-005-0032-5 CrossRefGoogle Scholar
  137. 137.
    Goto I, Jaw YL, Baluch AA (1981) Genetic studies on resistance of rice plant to blast fungus IV. Linkage analysis of four genes, Pi-a, Pi-k, Pi-z and Pi-i. Ann Phytopathol Soc Jpn 47:252–254CrossRefGoogle Scholar
  138. 138.
    Kwon SW, Cho Y, Kim Y et al (2008) Development of near-isogenic Japonica rice lines with enhanced resistance to Magnaporthe grisea. Mol Cells 25(3):407–416PubMedGoogle Scholar
  139. 139.
    Chauhan S, Farman ML, Zhang HB, Leong A (2002) Genetic and physical mapping of a rice blast resistance locus, PiCO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics 267:603–612. doi: 10.1007/s00438-002-0691-4 PubMedCrossRefGoogle Scholar
  140. 140.
    Tabien RE, Li Z, Paterson AH, Marchetti MA, Stansel JW, Pinson SRM (2002) Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet 105(2–3):313–324. doi: 10.1007/s00122-002-0940-2 PubMedGoogle Scholar
  141. 141.
    Zenbayashi K, Ashizawa T, Tani T, Koizumi S (2002) Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet 104(4):547–552. doi: 10.1007/s00122-001-0779-y PubMedCrossRefGoogle Scholar
  142. 142.
    Gowda M, Roy-Barman S, Chattoo BB (2006) Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers. Plant Breed 125(6):596–599. doi: 10.1111/j.1439-0523.2006.01248.x CrossRefGoogle Scholar
  143. 143.
    Fujii K, Hayano-Saito Y, Shumiya A, Inoue M (1995) Genetical mapping based on the RFLP analysis for the panicle blast resistance derived from a rice parental line St. No. 1. Breed Sci 45:209 (In Japanese)Google Scholar
  144. 144.
    Fujii K, Hayano-Saito Y, Saito K, Sugiura N, Hayashi N, Tsuji T, Izawa T, Iwasaki M (2000) Identification of RFLP marker tightly linked to the panicle blast resistance gene Pb1 in rice. Breeding Sci 50(3):183–188. ISSN: 1344-7610, Record Number 20003009467Google Scholar
  145. 145.
    Chen DH, de la Viña M, Inukai T, Mackill DJ, Ronald PC, Nelson RJ (1999) Molecular mapping of the blast resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Theor Appl Genet 98:1046–1053. doi: 10.1007/s001220051166 CrossRefGoogle Scholar
  146. 146.
    Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395. doi: 10.1016/S0168-9452(02)00133-4 CrossRefGoogle Scholar
  147. 147.
    Rai AK, Kumar SP, Gupta SK, Gautam N, Singh NK, Sharma TR (2011) Functional complementation of rice blast resistance gene Pi-kh(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J Plant Biochem Biotechnol 20(1):55–65. doi: 10.1007/s13562-010-0026-1 CrossRefGoogle Scholar
  148. 148.
    Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100(7):1121–1128. doi: 10.1007/s001220051395 CrossRefGoogle Scholar
  149. 149.
    Kaji R, Ogawa T (1996) RFLP mapping of a blast resistance gene, Pi-km, in rice. Breed Sci 46(Suppl. 1):70 (In Japanese)Google Scholar
  150. 150.
    Ahn SN, Kim YK, Han SS (1996) Molecular mapping of a gene for resistance to a Korean isolate of rice blast. Rice Genet Newsl 13:74–75Google Scholar
  151. 151.
    Hayasaka H, Miyao A, Yano M, Matsunaga K, Sasaki T (1996) RFLP mapping of a rice blast resistance gene Pi-k. Breed Sci 46(Suppl. 2):68 (In Japanese)Google Scholar
  152. 152.
    Pan Q, Wang L, Ikehashi H, Taniska T (1996) Identification of a new blast resistance gene in the indica rice cultivar Kasalath using Japanese differential cultivars and isozyme markers. Phytopathology 86(10):1071–1075. doi: 10.1094/Phyto-86-1071 CrossRefGoogle Scholar
  153. 153.
    Goto I (1970) Genetic studies on the resistance of rice plant to the blast fungus I. Inheritance of resistance in crosses Sensho x H-79 and Imochishirazu x H-79. Ann Phytopathol Soc Jpn 36:304–312CrossRefGoogle Scholar
  154. 154.
    Shinoda H, Toriyama K, Yunoki T, Ezuka A, Sakurai Y (1971) Studies in the varietal resistance of rice to blast. 6. Linkage relationship of blast resistance genes. Bull Chugoku Agric Exp Stn Ser A 20:1–25 (in Japanese with English summary)Google Scholar
  155. 155.
    Goto I (1976) Genetic studies on resistance of rice plant to blast fungus II. Difference in resistance to the blast disease between Fukunishiki and its parental cultivar. Zenith Ann Phytopathol Soc Jpn 42:253–260CrossRefGoogle Scholar
  156. 156.
    Goto I (1988) Genetic studies on resistance of rice plant to blast fungus (VII). Blast resistance genes of Kuroka. Ann Phytopathol Soc Jpn 54:460–465CrossRefGoogle Scholar
  157. 157.
    Liu P, Zhu Z, Lu Y (2004) Marker-assisted selection in segregating generations of self-fertilizing crops. Theor Appl Genet 109(2):370–376. doi: 10.1007/s00122-004-1636-6 PubMedCrossRefGoogle Scholar
  158. 158.
    Kinoshita T, Kiyosawa S (1997) Some considerations on linkage relationships between Pii and Piz in the blast resistance of rice. Rice Genet Newsl 14:57–59Google Scholar
  159. 159.
    Jeon JS, Chen D, Yi GH, Wang GL, Ronald PC (2003) Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol Genet Genomics 269(2):280–289. doi: 10.1007/s00438-003-0834-2 PubMedGoogle Scholar
  160. 160.
    Inukai T, Nelson RJ, Zeigler RS, Sarkarung S, Mackill DJ, Bonman JM, Takamure I, Kinoshita T (1996) Genetic analysis of blast resistance in tropical rice cultivars using near-isogenic lines. In: Khush GS (ed) Rice genetics III, proceeding of the third international rice genetics symposium. International Rice Research Institute, Manila, Philippines, pp 447–455Google Scholar
  161. 161.
    Pan QH, Hu ZD, Tanisaka T, Wang L (2003) Fine mapping of the blast resistance gene Pi15, linked to Pii on rice chromosome 9. Acta Bot Sinica 45(7):871–877Google Scholar
  162. 162.
    Ise K (1991) Linkage analysis of some blast resistance gene in rice, Oryza sativa L. Jpn J Breed 42(Suppl. 2):388–389 (In Japanese)Google Scholar
  163. 163.
    Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107(6):1139–1147. doi: 10.1007/s00122-003-1349-2 PubMedCrossRefGoogle Scholar
  164. 164.
    Pan QH, Tanisaka T, Ikehashi H (1995) Studies on the genetics and breeding of blast resistance in rice IV. Gene analysis for the blast resistance of a indica variety Kasalath. Breed Sci 45(Suppl. 2):170 [In Japanese]Google Scholar
  165. 165.
    Iwata N (1996) Registration of new gene symbols. Rice Genet Newsl 13:12–18Google Scholar
  166. 166.
    Wu JL, Fan YY, Li DB, Zheng KL, Leung H, Zhuang JY (2005) Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet 111(1):50–56. doi: 10.1007/s00122-005-1971-2 PubMedCrossRefGoogle Scholar
  167. 167.
    Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant–Microbe Interact 19(11):1216–1228. doi:  10.1094/MPMI-19-1216 Google Scholar
  168. 168.
    Hashimoto N, Higuchi K, Koiwa M, Yasuda K, Daigen M (1998) Selection of individual having Pi-z, the rice blast true resistance gene, using RFLP markers in resistance sensitive cross progeny. Breed Sci 48(Suppl. 2):109 (In Japanese)Google Scholar
  169. 169.
    Zhuang JY, Wu JL, Fan YY, Rao ZM, Zheng KL (2001) Genetic drag between a blast resistance gene and QTL conditioning yield trait detected in a recombinant inbred line population in rice. Rice Genet Newsl 18:69–70Google Scholar
  170. 170.
    Deng Y, Zhu X, Shen Y, He Z (2006) Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet 113(4):705–713. doi: 10.1007/s00122-006-0338-7 PubMedCrossRefGoogle Scholar
  171. 171.
    Hayasaka H, Shimano T, Ebana K, Nagamura Y, Yano M, Sasaki T et al (1995) RFLP mapping of a rice blast resistance gene Pi-b. Breed Sci 45(Suppl. 1):92 (in Japanese)Google Scholar
  172. 172.
    Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21(7):859–868. doi: 10.1094/MPMI-21-7-0859 PubMedCrossRefGoogle Scholar
  173. 173.
    Naqvi NI, Bonman JM, Makill DJ, Nelson RJ, Chattoo BB (1995) Identification of RAPD markers linked to major blast-resistance gene in rice. Mol Breed 1(4):341–348. doi: 10.1007/BF01248411 CrossRefGoogle Scholar
  174. 174.
    Naqvi NI, Chattoo BB (1996) Molecular genetic analysis and sequence characterized amplified region-assisted selection of blast resistance in rice. In: Khush GS (ed) Rice genetics III. Proceeding of the third international rice genetics symposium. International Rice Research Institute, Manila, Philippines, pp 570–576Google Scholar
  175. 175.
    Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103(2–3):185–190. doi: 10.1007/s001220100611 CrossRefGoogle Scholar
  176. 176.
    Fukuoka S, Okuno K, Kawase M (2007) Rice blast disease gene Pi21, resistance gene pi21 and utilization thereof. Patent WO/2007/000880Google Scholar
  177. 177.
    Terashima T, Fukuoka S, Saka N, Kudo S (2008) Mapping of a blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breed 127(5):485–489. doi: 10.1111/j.1439-0523.2007.01451.x CrossRefGoogle Scholar
  178. 178.
    Chen XW, Li SG, Xu JC, Zhai WX, Ling ZZ, Ma BT, Wang YP, Wang WM, Cao G, Ma YQ, Shang JJ, Zhao XF, Zhou KD, Zhu LH (2004) Identification of two blast resistance genes in a rice variety. Digu J Phytopathol 152(2):77–85. doi: 10.1046/j.1439-0434.2003.00803.x CrossRefGoogle Scholar
  179. 179.
    Zhou JH, Wang JL, Xu JC, Lei CL, Ling ZZ (2004) Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan. Plant Pathol 53(2):191–196. doi: 10.1111/j.0032-0862.2004.00986.x CrossRefGoogle Scholar
  180. 180.
    Lei CL, Huang DY, Li W, Wang JL, Liu ZL, Wang XT, Shi K, Cheng ZJ, Zhang X, Ling ZZ, Wan JM (2005) Molecular mapping of a blast resistance gene in an indica rice cultivar Yanxian No. 1. Rice Genet Newsl 22:76–77Google Scholar
  181. 181.
    Pan QH, Tanisaka T, Ikehashi H (1997) Studies on the genetics and breeding of blast resistance in rice VII. Gene analysis for the blast resistance of Indian native cultivar, Aus 373. Breed Sci 47(Suppl. 1):35 (in Japanese)Google Scholar
  182. 182.
    Barman SR, Gowda M, Venu RC, Chattoo BB (2004) Identification of a major blast resistance gene in the rice cultivar ‘Tetep’. Plant Breeding 123(3):300–302. doi: 10.1111/j.1439-0523.2004.00982.x CrossRefGoogle Scholar
  183. 183.
    Nguyen T, Koizumi S, La T, Zenbayashi K, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A (2006) Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet 113(4):697–704. doi: 10.1007/s00122-006-0337-8 PubMedCrossRefGoogle Scholar
  184. 184.
    Imbe T, Matsumoto S (1985) Inheritance of resistance of rice varieties to the blast fungus strains virulent to the variety “Reiho”. Jpn J Breed 35:332–339 (in Japanese)Google Scholar
  185. 185.
    Fukuta Y, Yanoria MJT, Mercado-Escueta D, Ebron LA, Fujita Y, Araki E, Khush GS (2004) Quantitative trait loci (QTL) reactions to rice blast isolates from Japan and the Philippines. In: Kawasaki S (ed) Rice blast: interaction with rice and control. Kluwer, Dordrecht, pp 113–121Google Scholar
  186. 186.
    Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA 100(5):2544–2549. doi: 10.1073/pnas.0437898100 PubMedCrossRefGoogle Scholar
  187. 187.
    Huang HJ, Tseng CS, Lai MH (2004) Identification and mapping of the QTL controlling resistance to blast (Magnaporthe grisea) disease in rice. J Genet Mol Biol 15:96–107 (in Chinese, English abstract)Google Scholar
  188. 188.
    Talukder ZI, McDonald AJS, Price AH (2005) Loci controlling partial resistance to rice blast do not show marked QTL x environment interaction when plant nitrogen status alters disease severity. New Phytol 168(2):455–464. doi: 10.1111/j.1469-8137.2005.01507.x PubMedCrossRefGoogle Scholar
  189. 189.
    Sato H, Takeuchi Y, Hirabayashi H, Nemoto H, Hirayama M, Kato H, Imbe T, Ando I (2006) Mapping QTLs for field resistance to rice blast in the Japanese upland rice variety Norin 12. Breed Sci 56:415–418. doi: 10.1270/jsbbs.56.415 CrossRefGoogle Scholar
  190. 190.
    Parlevliet JE (1988) Identification and evaluation of quantitative resistance. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology: genetics, resistance, and management, vol 2. McGraw-Hill, New York, pp 215–247Google Scholar
  191. 191.
    Bonman JM, Ahn SW (1990) Proceedings of the international rice research conference. IRRI, PhilippinesGoogle Scholar
  192. 192.
    Utami DW, Moeljopawiro S, Septiningsih EM, McCouch SR (1999) Proceedings of the international programme on rice biotechnology, Phuket, ThailandGoogle Scholar
  193. 193.
    Vales M (1989) Strategy for the improvement of the resistance to rice blast disease. In: International symposium on the role of the biology to resolve the food crisis in Africa. African network of biosciences, Yamoussoukro, Côte d’Ivoire (in French)Google Scholar
  194. 194.
    Fabien RE, Li Z, Marchetti MA, Pinson SRM (1998) Proceedings of the 2nd international rice blast conference, Montpellier, FranceGoogle Scholar
  195. 195.
    Yunoki T, Ezuka A, Sakurai Y, Shinoda H, Toriyama K (1970) Studies on the varietal resistance to rice blast. 3. Testing methods for field resistance on young seedling grown in greenhouse. Bull Chugoku Natl Agric Exp Stn E 6:1–19Google Scholar
  196. 196.
    Fukuoka S, Okuno K (1997) QTL analysis for field resistance to rice blast using RFLP markers. Rice Genet Newsl 14:99Google Scholar
  197. 197.
    Zenbayashi-Sawata K, Ashizawa T, Koizumi S (2005) Pi34-AVR Pi34: a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. J Gen Plant Pathol 71(6):395–401. doi: 10.1007/s10327-005-0221-4 CrossRefGoogle Scholar
  198. 198.
    Correa-Victoria FJ, Zeigler RS (1995) Pathogenic variability in Pyricularia grisea at a rice blast “Hot Spot” breeding site in eastern Colombia. Plant Dis 77:1029–1035CrossRefGoogle Scholar
  199. 199.
    Young ND (1996) QTL mapping and quantitative disease resistance in plants.Annual Review. Phytopathology 34:470–501. doi: 10.1146/annurev.phyto.34.1.479 CrossRefGoogle Scholar
  200. 200.
    Silue′ D, Tharreau D, Notteghem JL (1992) Identification of Magnaprothe grisea avirulence genes to seven rice cultivars. Phytopathology 82:1462–1467. doi: 10.1094/Phyto-82-1462 CrossRefGoogle Scholar
  201. 201.
    Ashkani S, Rafii MY, Sariah M, Abdullah SNA, Rusli I, Harun AR, Latif MA (2011) Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa). Genet Mol Res 10(3):1345–1355. doi: 10.4238/vol10-3gmr1331 PubMedCrossRefGoogle Scholar
  202. 202.
    Ashkani S, Rafii MY, Rusli I, Sariah M, Abdullah SNA, Harun AR, Latif MA (2012) SSRs for marker-assisted selection for blast resistance in rice (Oryza sativa L.). Plant Mol Biol Rep 30:79–86. doi: 10.1007/s11105-011-0315-4 CrossRefGoogle Scholar
  203. 203.
    Kelly JD (1995) Use of RAPD markers in breeding for major gene resistance to plant pathogens. Hortic Sci 30:461–465Google Scholar
  204. 204.
    Stavely JR, Steadman JR, Coyne DP, Lindgren DT (1989) Belneb rust resistant-1 and -2 great northern dry bean germplasm. Hortic Sci 24:400–401Google Scholar
  205. 205.
    Fjellstrom RG, McClung AM, Shank R, Marchetti T (2003) Progress on development of microsatellite markers associated with rice blast resistance genes. In: The XI congress of international plant and animal genome, January 11–15, San Diego, CA, USA, p 154Google Scholar
  206. 206.
    Johnson VA, Gibbons JW, Moldenhauer KAK, Wang Z, Jia Y (2003) Rice variety improvement using marker assisted selection In: Norman RJ, Meullenet JF (eds) Rice research studies 2002. Arkansas Agricultural Experiment StationGoogle Scholar
  207. 207.
    Conaway-Bormans CA, Marchetti MA, Johnson CW, McClung AM, Park WD (2003) Molecular markers linked to the blast resistance gene Pi-z in rice for use in marker-assisted selection. Theor Appl Genet 107(6):1014–1020. doi: 10.1007/s00122-003-1338-5 PubMedCrossRefGoogle Scholar
  208. 208.
    Jia Y (2003) Marker assisted selection for the control of rice blast disease. Pestic Outlook 14:150–152CrossRefGoogle Scholar
  209. 209.
    Fjellstrom R, McClung AM, Shank AR (2006) SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm. Mol Breed 17:149–157. doi: 10.1007/s11032-005-4735-4 CrossRefGoogle Scholar
  210. 210.
    Rybka K, Miyamoto M, Ando I, Saito A, Kawasaki S (1997) High resolution mapping of the indica-derived rice blast resistance genes. II. Pi-ta2 and Pi-ta and a consideration of their origin. Mol Plant Microbe Interact 10(4):517–524. doi: 10.1094/MPMI.1997.10.4.517 CrossRefGoogle Scholar
  211. 211.
    Chen S, Wang L, Que Z, Pan R, Pan Q (2005) Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No. 1. Theor Appl Genet 111(8):1563–1570. doi: 10.1007/s00122-005-0086-0 PubMedCrossRefGoogle Scholar
  212. 212.
    Du PV, Loan LC, Sang ND (2007) Blast research in Mekong river delta of Vietnam. In: JIRCAS (Japan International Research Center for Agricultural Sciences, Tsukuba, Japan) working report 53, pp 53–63Google Scholar
  213. 213.
    Soller M, Beckmann JS (1983) Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet 67(1):25–33. doi: 10.1007/BF00303917 CrossRefGoogle Scholar
  214. 214.
    Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:567–569CrossRefGoogle Scholar
  215. 215.
    Khush GS, Bacalangco E, Ogawa T (1990) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet Newsl 7:121–122Google Scholar
  216. 216.
    Kloppers FJ, Pretorius ZA (1997) Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol 46:737–750. doi: 10.1046/j.1365-3059.1997.d01-58.x CrossRefGoogle Scholar
  217. 217.
    Shanti ML, George MLC, Cruz CMV, Bernardo MA, Nelson RJ, Leung H, Reddy JN, Sridhar R (2001) Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis 85(5):506–512. doi: 10.1094/PDIS.2001.85.5.506 CrossRefGoogle Scholar
  218. 218.
    Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (Xa5, Xa13 and Xa21) using marker assisted selection into indica rice cultivar PR106. Theor Appl Genet 102(6):1011–1015. doi: 10.1007/s001220000495 CrossRefGoogle Scholar
  219. 219.
    Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168(1):513–523. doi: 10.1534/genetics.103.023358 PubMedCrossRefGoogle Scholar
  220. 220.
    Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V, Sarkel S, Singh D, Krishnan SG, Nagarajan M, Vinod KK, Singh UD, Rathore R, Prashanthi SK, Agrawal PK, Bhatt JC, Mohapatra T, Prabhu KV, Singh AK (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Res 128:8–16. doi: 10.1016/j.fcr.2011.12.003 CrossRefGoogle Scholar
  221. 221.
    Fu C, Wu T, Liu W, Wang F, Li J, Zhu X, Huang H, Liu ZR, Liao Y, Zhu M, Chen J, Huang Y (2012) Genetic improvement of resistance to blast and bacterial blight of the elite maintainer line Rongfeng B in hybrid rice (Oryza sativa L.) by using marker-assisted selection. Afr J Biotechnol 11(67):13104–13124. doi: 10.5897/AJB12.1465 CrossRefGoogle Scholar
  222. 222.
    Lei C, Wu J, Ling Z, Zhuang J, Wang, J, Zheng K, Wan J (2006) Research progress on rice blast disease and resistance breeding in China. A differential system for blast resistance for stable rice production environment. Japan International Research Center for Agricultural Sciences (JIRCAS), Japan, working report No. 53Google Scholar
  223. 223.
    Fujita D, Ebron LA, Kobayashi N, Fukuta Y (2006) Comparison of DNA marker analysis of the blast resistance genes Pib and Pita in IRRI-bred rice varieties with gene estimation by conventional genetic analysis. Development and characterization of blast resistance using differential varieties in rice. Japan International Research Center for Agricultural Sciences (JIRCAS), Japan, working report No. 63Google Scholar
  224. 224.
    Peng S, Khush GS (2003) Four decades of breeding for varietal improvement of irrigated lowland rice in the International Rice Research Institute. Plant Prod Sci 6(3):157–164. doi: 10.1626/pps.6.157 CrossRefGoogle Scholar
  225. 225.
    Chen HQ, Chen ZX, Ni S, Zuo SM, Pan XB, Zhu XD (2008) Pyramiding three genes with resistance to blast by marker-assisted selection to improve rice blast resistance of Jin 23B, application, Zhongguo Shuidao Kexue. Chin J Rice Sci 22(1):23–27Google Scholar
  226. 226.
    Ou SH, Jennings PR (1969) Progress in the development of disease-resistant rice. Annu Rev Phytopathol 7:383–410. doi: 10.1146/ CrossRefGoogle Scholar
  227. 227.
    Liu DW, Oard SV, Oard JH (2003) High transgene expression levels in sugarcane (Saccharum officinarurn L) driven by rice ubiquitin promoter RUBQ2. Plant Sci 165:743–750CrossRefGoogle Scholar
  228. 228.
    Chen XW, Li SG, Ma YQ, Li HY, Zhou KD, Zhu LH (2004) Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice, Shengwu Gongcheng Xuebao. Chin J Biotechnol 20(5):708–714Google Scholar
  229. 229.
    Wen S, Gao B (2011) Introgressing blast resistant gene Pi-9(t) into elite rice restorer Luhui17 by marker-assisted selection. Rice Genomics Genet 2(4):31–36. doi: 10.5376/rgg.2011.02.0004 Google Scholar
  230. 230.
    Cornelissen BJC, Melchers LS (1993) Strategies for control of fungi diseases with transgenic plants. Plant Physiol 101:709–712PubMedGoogle Scholar
  231. 231.
    Campbell MA, Heather AF, Pamela CR (2002) Engineering pathogen resistance in crop plants. Transgenic Res 11(6):599–613. doi: 10.1023/A:1021109509953 PubMedCrossRefGoogle Scholar
  232. 232.
    Tan YN, Yi ZL, Jiang JX, Qin JP, Xiao L (2004) Strategies and advances in improving resistance to rice blast by transgenic approaches. Mol Plant Breed 2(6):847–852 (in Chinese with English abstract)Google Scholar
  233. 233.
    Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet 99(3–4):383–390. doi: 10.1007/s001220051248 PubMedCrossRefGoogle Scholar
  234. 234.
    Stark-Lorenzen P, Nelke B, HanBler G, Muhlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L). Plant Cell Rep 16(10):668–673. doi: 10.1007/s002990050299 CrossRefGoogle Scholar
  235. 235.
    Feng DR, Wei JW, Xu XP, Xu Y, Li BJ (1999) Introduction of multiple antifungal protein genes into rice and preliminary study on resistance to Pyricularia oryzae of transgenic rices. Acta Sci Nat Univ Sunyatsen 38(4):62–66 (in Chinese with English abstract)Google Scholar
  236. 236.
    Ming XT, Wang LJ, An CC, Yuan HY, Zheng HH, Chen ZL (2000) Introducing trichosanthin gene into rice mediated by Agrobacterium tumefacien and testing the activity of resistance to blast. Chin Sci Bull 45:1080–1084Google Scholar
  237. 237.
    Kanzaki H, Nirasasawa S, Saitoh H, Ito M (2002) Over expression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105(6–7):809–814. doi: 10.1007/s00122-001-0817-9 PubMedGoogle Scholar
  238. 238.
    Jain RK, Jain S (2000) Transgenic strategies for genetic improvement of Basmati rice. Indian J Exp Biol 38(1):6–17PubMedGoogle Scholar
  239. 239.
    Xu MH, Li CY, Li JB, Tan XL, Tian WZ, Tang ZS (2003) Analysis of resistant spectrum to rice blast in transgenic rice lines introduced lysozyme gene from T4 phage. Agric Sci China 2(3):273–279Google Scholar
  240. 240.
    Qing C, Jing Y, Lin L, Yuan S, Jinbin L, Youyong Z, Chengyun L (2011) Chlorimuronethyl resistance selectable marker unsuited for the transformation of rice blast fungus (Magnaporthe grisea). In: Li D, Liu Y, Chen Y (eds) CCTA 2010, part I, IFIP AICT 344, pp 335–342Google Scholar
  241. 241.
    Li D, Bobrowicz P, Wilkinson HH, Ebbole DJ (2005) A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170(3):1091–1104. doi: 10.1534/genetics.104.036772 PubMedCrossRefGoogle Scholar
  242. 242.
    Chen QH, Wang YC, Li AN, Zhang ZG, Zheng XB (2007) Molecular mapping of two cultivar-specific avirulence genes in the rice blast fungus Magnaporthe grisea. Mol Genet Genomics 277(2):139–148. doi: 10.1007/s00438-006-0179-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • G. Miah
    • 1
  • M. Y. Rafii
    • 1
    • 2
    Email author
  • M. R. Ismail
    • 1
    • 2
  • A. B. Puteh
    • 2
  • H. A. Rahim
    • 3
  • R. Asfaliza
    • 4
  • M. A. Latif
    • 2
    • 5
  1. 1.Laboratory of Food Crops, Institute of Tropical AgricultureUniversiti Putra Malaysia (UPM)UPM SerdangMalaysia
  2. 2.Department of Crop Science, Faculty of AgricultureUniversiti Putra Malaysia (UPM)UPM SerdangMalaysia
  3. 3.Agrotechnology and Bioscience DivisionMalaysian Nuclear AgencyKajangMalaysia
  4. 4.Rice and Industrial Crops CentreMalaysian Agriculture Research and Development Institute (MARDI)Seberang PeraiMalaysia
  5. 5.Bangladesh Rice Research InstituteGazipurBangladesh

Personalised recommendations