Molecular Biology Reports

, Volume 40, Issue 3, pp 2263–2271 | Cite as

Transcription factor ATF-3 regulates allele variation phenotypes of the human SLC11A1 gene

  • Styliani Taka
  • Maria Gazouli
  • Panagotis K. Politis
  • Kalliopi I. Pappa
  • Nicholas P. Anagnou


Genetic polymorphisms in the human solute carrier family 11 member 1 (SLC11A1) gene predispose to susceptibility to infectious/inflammatory diseases and cancer. Human susceptibility to these diseases exhibits allelic association with a polymorphic regulatory Z-DNA-forming microsatellite of a (GT/AC)n repeat. The carriage of different alleles may influence chromatin remodeling and accessibility by transcription factors. Of particular importance is the binding site for the Activating Protein 1 (AP-1) elements, (ATF-3 and c-Jun), adjacent to the 5′ sequence of the Z-DNA-forming polymorphism. The aim of the study was to characterize the transcriptional mechanisms controlling different alleles of SLC11A1 expression by ATF-3 and c-Jun. Allele 2, [T(GT)5AC(GT)5AC(GT)10GGCAGA(G)6], and Allele 3, [T(GT)5AC(GT)5AC(GT)9GGCAGA(G)6], were subcloned into the PGL2Basic vector. Transient transfections of THP-1 cells with the constructs, in the presence or absence of pATF-3 were preformed. Luciferase expression was determined. To document the recruitment of ATF-3 and c-Jun, to the polymorphic promoter alleles in vivo, we performed ChIP assays with transient transfected THP-1 cells treated with or without lipopolyssacharides. Our data documented that ATF-3 suppresses the transcriptional activation of Allele-3, and this suppression is enhanced in the presence of lipopolyssacharides. Our findings suggest that ATF-3 and c-Jun may influence heritable variation in SLC11A1-dependent innate resistance to infection and inflammation both within and between populations.


SLC11A1 ATF-3 c-Jun Transcriptional regulation Innate resistance 


  1. 1.
    Awomoyi A (2007) The human solute carrier family 11 member 1 protein (SLC11A1): linking infections, autoimmunity and cancer? FEMS Immunol Med Microbiol 49:324–329PubMedCrossRefGoogle Scholar
  2. 2.
    Canonne-Hergaux F, Calafat J, Richer E, Cellier M, Grinstein S, Borregaard N, Gros P (2002) Expression and subcellular localization of NRAMP1 in human neutrophil granules. Blood 100:268–275PubMedCrossRefGoogle Scholar
  3. 3.
    Searle S, Bright NA, Roach TI, Atkinson PG, Barton CH, Meloen RH, Blackwell JM (1998) Localisation of Nramp1 in macrophages: modulation with activation and infection. J Cell Sci 111:2855–2866PubMedGoogle Scholar
  4. 4.
    Atkinson PG, Barton CH (1998) Ectopic expression of Nramp1 in COS-1 cells modulates iron accumulation. FEBS Lett 425(2):239–242PubMedCrossRefGoogle Scholar
  5. 5.
    Atkinson PG, Blackwell JM, Barton CH (1997) Nramp1 locus encodes a 65 kDa interferon-gamma-inducible protein in murine macrophages. Biochem J 325:779–786PubMedGoogle Scholar
  6. 6.
    Cellier M, Govoni G, Vidal S, Kwan T, Groulx N, Liu J, Sanchez F, Skamene E, Schurr E, Gros P (1994) Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med 180:1741–1752PubMedCrossRefGoogle Scholar
  7. 7.
    Shaw MA, Collins A, Peacock CS, Miller EN, Black GF, Sibthorpe D, Lins-Lainson Z, Shaw JJ, Ramos F, Silveira F, Blackwell JM (1997) Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under oligogenic control: linkage study of the candidate genes NRAMP1 and TNFA. Tuber Lung Dis 78:35–45PubMedCrossRefGoogle Scholar
  8. 8.
    Marquet S, Sanchez FO, Arias M, Rodriguez J, Paris SC, Skamene E, Schurr E, Garcia LF (1999) Variants of the human NRAMP1 gene and altered human immunodeficiency virus infection susceptibility. J Infect Dis 180:1521–1525PubMedCrossRefGoogle Scholar
  9. 9.
    Cervino AC, Lakiss S, Sow O, Hill AV (2002) Allelic association between the NRAMP1 gene and susceptibility to tuberculosis in Guinea–Conakry. Ann Hum Genet 64:507–512CrossRefGoogle Scholar
  10. 10.
    Gao PS, Fujishima S, Mao XQ, Remus N, Kanda M, Enomoto T, Dake Y, Bottini N, Tabuchi M, Hasegawa N, Yamaguchi K, Tiemessen C, Hopkin JM, Shirakawa T, Kishi F (2000) Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. Clin Genet 58:74–76PubMedCrossRefGoogle Scholar
  11. 11.
    Meisner SJ, Mucklow S, Warner G, Sow SO, Lienhardt C, Hill AV (2001) Association of NRAMP1 polymorphism with leprosy type but not susceptibility to leprosy per se in West Africans. Am J Trop Med Hyg 65:733–735PubMedGoogle Scholar
  12. 12.
    Awomoyi AA, Marchant A, Howson JM, McAdam KP, Blackwell JM, Newport MJ (2002) Interleukin-10, polymorphism in SLC11A1 (formerly NRAMP1), and susceptibility to tuberculosis. J Infect Dis 186:1808–1814PubMedCrossRefGoogle Scholar
  13. 13.
    Liu W, Cao WC, Zhang CY et al (2004) VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case–control study. Tuber Lung Dis 8:428–434Google Scholar
  14. 14.
    Singh A, Gaughan JP, Kashyap VK (2011) SLC11A1 and VDR gene variants and susceptibility to tuberculosis and disease progression in East India. Int J Tuber Lung Dis 15(11):1468–1474CrossRefGoogle Scholar
  15. 15.
    Hofmeister A, Neibergs HL, Pokorny RM, Galanduik S (1997) The natural resistance associated macrophage protein gene is associated with Cohn’s disease. Surgery 122:173–179PubMedCrossRefGoogle Scholar
  16. 16.
    Maliarik MJ, Chen KM, Sheffer RG (2000) The natural resistance associated macrophage protein gene in African Americans with sarcoidosis. Am J Respir Cell Mol Biol 22:672–675PubMedGoogle Scholar
  17. 17.
    Sanjeevi CB, Miller EN, Dabadghao P, Rumba I, Shtauvere A, Denisova A, Clayton D, Blackwell JM (2000) Polymorphism at NRAMP1 and D2S1471 loci associated with juvenile rheumatoid arthritis. Arthritis Rheum 43:1397–1404PubMedCrossRefGoogle Scholar
  18. 18.
    Singal DP, Li J, Zhu Y, Zhang G (2000) NRAMP1 gene polymorphism in patients with rheumatoid arthritis. Tissue Antigens 55:44–47PubMedCrossRefGoogle Scholar
  19. 19.
    Yang YS, Kim SJ, Kim JW, Koh EM (2000) NRAMP1 gene polymorphisms in patients with rheumatoid arthritis in Koreans. J Korean Med Sci 15:83–87PubMedGoogle Scholar
  20. 20.
    Kojima Y, Kinouchi Y, Takahashi S, Negoro K, Hiwatashi N, Shimosegawa T (2001) Inflammatory bowel disease is associated with a novel promoter polymorphism of natural resistance-associated macrophage protein 1 (NRAMP1) gene. Tissue Antigens 58:379–384PubMedCrossRefGoogle Scholar
  21. 21.
    Ouchi K, Suzuki Y, Shirakawa T, Kishi F (2003) Polymorphism of SLC11A1 (formerly NRAMP1) gene confers susceptibility to Kawasaki disease. J Infect Dis 87:326–329CrossRefGoogle Scholar
  22. 22.
    Gazouli M, Koundourakis A, Ikonomopoulos J, Gialafos EJ, Papaconstantinou I, Nasioulas G, Lukas JC, Gorgoulis VG (2007) The functional polymorphisms of NRAMP1 gene in Greeks with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 24:153–154PubMedGoogle Scholar
  23. 23.
    Kotze MJ, de Villiers JN, Rooney RN, Grobbelaar JJ, Mansvelt EP, Bouwens CS, Carr J, Stander I, du Plessis L (2001) Analysis of the NRAMP1 gene implicated in iron transport: association with multiple sclerosis and age effects. Blood Cells Mol Dis 27:44–53PubMedCrossRefGoogle Scholar
  24. 24.
    Zaahl MG, Warnich L, Victor TC, Kotze MJ (2005) Association of functional polymorphisms of SLC11A1 with risk of esophageal cancer in the South African colored population. Cancer Genet Cytogenet 159:48–52PubMedCrossRefGoogle Scholar
  25. 25.
    Bayele HK, Peyssonnaux C, Giatromanolaki A, Arrais-Silva WW, Mohamed HS, Collins H, Giorgio S, Koukourakis M, Johnson RS, Blackwell JM, Nizet V, Srai SK (2007) HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA forming microsatellite. Blood 110:3039–3048PubMedCrossRefGoogle Scholar
  26. 26.
    Richer E, Campion CG, Dabbas B, White JH, Cellier MF (2008) Transcription factors Sp1 and C/EBP regulate NRAMP1 gene expression. FEBS J 275:5074–5089PubMedCrossRefGoogle Scholar
  27. 27.
    Yong Zhong Xu, Thuraisingam Thusanth, Marino Rafael, Radzioch Danuta (2011) Recruitment of SWI/SNF Complex is required for trancriptional activation of the SLC11A1 gene during macrophage differentiation of HL-60 cells. J Biol Chem 286:12839–12849CrossRefGoogle Scholar
  28. 28.
    Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7:321–335PubMedGoogle Scholar
  29. 29.
    Ha SC, Lowenhaupt K, Rich A, Kim YG, Kim KK (2005) Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437:1183–1186PubMedCrossRefGoogle Scholar
  30. 30.
    Liu H, Mulholland N, Fu H, Zhao K (2006) Co-operative activity of BRG1 and Z-DNA formation in chromatin remodelling. Mol Cell Biol 26:2550–2559PubMedCrossRefGoogle Scholar
  31. 31.
    Angel P, Baumann I, Stein B, Delius H, Rahmsdorf HJ, Herrlich P (1987) 12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5′-flanking region. Mol Cell Biol 7:2256–2266PubMedGoogle Scholar
  32. 32.
    Hai T (2006) The ATF transcription factors in cellular adaptive responses. In: Ma J (ed) Gene expression and regulation. Higher Education Press, Beijing, pp 322–333Google Scholar
  33. 33.
    Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88:3720–3724PubMedCrossRefGoogle Scholar
  34. 34.
    Zaahl MG, Robson KJH, Warnich L, Kotze MJ (2004) Expression of the SLC11A1 (NRAMP1) 5 V-(GT)n repeat: opposite effect in the presence of 237C → T. Blood Cells Mol Dis 33:45–50PubMedCrossRefGoogle Scholar
  35. 35.
    Rich A, Nordheim A, Wang AHJ (1984) The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem 53:791–846PubMedCrossRefGoogle Scholar
  36. 36.
    Herbert A, Rich A (1999) Left-handed Z-DNA: structure and function. Genetica 106:37–47PubMedCrossRefGoogle Scholar
  37. 37.
    Schroth, Chou P-J, Shing HoP (1992) Mapping Z-DNA in the human genome. J Biol Chem 267:11846–11855PubMedGoogle Scholar
  38. 38.
    Rothenburg S, Koch-Nolte F, Haag F (2001) DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles. Immunol Rev 184:286–298PubMedCrossRefGoogle Scholar
  39. 39.
    Oh DB, Kim YG, Rich A (2002) Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc Natl Acad Sci USA 99:16666–16671PubMedCrossRefGoogle Scholar
  40. 40.
    Ha SC, Lokanath NK, Van Quyen D (2004) A poxvirus protein forms a complex with left-handed Z-DNA: crystal structure of a Yatapoxvirus Z_ bound to DNA. Proc Natl Acad Sci USA 101:14367–14372PubMedCrossRefGoogle Scholar
  41. 41.
    Hammock EA, Young LJ (2005) Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308:1630–1634PubMedCrossRefGoogle Scholar
  42. 42.
    Boehlk S, Fessele S, Mojaat A, Miyamoto NG, Werner T, Nelson EL, Schlöndorff D, Nelson PJ (2000) ATF and Jun transcription factors, acting through an Ets/CRE promoter module, mediate lipopolysaccharide inducibility of the chemokine RANTES in monocytic Mono Mac 6 cells. Eur J Immunol 30:1102–1112PubMedCrossRefGoogle Scholar
  43. 43.
    Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178PubMedCrossRefGoogle Scholar
  44. 44.
    Blackwell JM, Searle S, Mohamed H, White JK (2003) Divalent cation transport and susceptibility to infectious and autoimmune disease: continuation of the Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story. Immunol Lett 85:197–203PubMedCrossRefGoogle Scholar
  45. 45.
    Nagai, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3(7):667–672PubMedGoogle Scholar
  46. 46.
    Hambleton J, Weinstein SL, Lem L, DeFranco AL (1996) Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA 93(7):2774–2778PubMedCrossRefGoogle Scholar
  47. 47.
    Hsu JC, Bravo R, Taub R (1992) Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol 12:4654–4665PubMedGoogle Scholar
  48. 48.
    Chen BP, Wolfgang CD, Hai T (1996) Analysis of ATF3, a tran- scription factor induced b yphysiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 16:1157–1168PubMedGoogle Scholar
  49. 49.
    Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF, Hai T, Whelan J (1997) Tissue- specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 272:19943–19950PubMedCrossRefGoogle Scholar
  50. 50.
    Ameri K, Hammond EM, Culmsee C, Raida M, Katschinski DM, Wenger RH, Wagner E, Davis RJ, Hai T, Denko N, Harris AL (1996) Induction of activating transcription factor 3 by anoxia is independent of p53 and the hypoxic HIF signaling pathway. Oncogene 26:284–289CrossRefGoogle Scholar
  51. 51.
    Lerner A, Clayton LK, Mizoguchi E, Ghendler Y, van EW, Koyasu S, Bhan AK, Reinherz EL (1996) Cross-linking of T-cell receptors on double-positive thymocytes induces a cytokine-mediated stromal activation process linked to cell death. EMBO J 15:5876–5887PubMedGoogle Scholar
  52. 52.
    Kim JY, Song EH, Lee S, Lim JH, Choi JS, Koh IU, Song J, Kim WH (2010) The induction of STAT1 gene by activating transcription factor 3 contributes to pancreatic beta- cell apoptosis and its dysfunction in streptozotocin-treated mice. Cell Signal 22:1669–1680PubMedCrossRefGoogle Scholar
  53. 53.
    Liu G, Su L, Hao X, Zhong N, Zhong D, Singhal S, Liu X (2011) Salermide upregulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med. doi:10.1111/j.1582-4934.2011.01401.x Google Scholar
  54. 54.
    Yan C, Lu D, Hai T, Boyd DD (2005) Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBOJ 24:2425–2435CrossRefGoogle Scholar
  55. 55.
    Pearson AG, Gray CW, Pearson JF, Greenwood JM, During MJ, Dragunow M (2003) ATF3 enhances c-Jun- mediated neurite sprouting. Brain Res Mol Brain Res 120:38–45PubMedCrossRefGoogle Scholar
  56. 56.
    Hunt D, Raivich G, Anderson PN (2012) Activating transcription factor 3 and the nervous system. Front Mol Neurosci 5:7PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Styliani Taka
    • 1
  • Maria Gazouli
    • 1
  • Panagotis K. Politis
    • 2
  • Kalliopi I. Pappa
    • 3
  • Nicholas P. Anagnou
    • 1
    • 3
  1. 1.Laboratory of BiologyUniversity of Athens School of MedicineAthensGreece
  2. 2.Histology Laboratory, Centre of Basic Research IBiomedical Research Foundation, Academy of Athens (BRFAA)AthensGreece
  3. 3.Cell and Gene Therapy Laboratory, Centre of Basic ResearchBiomedical Research Foundation, Academy of Athens (BRFAA)AthensGreece

Personalised recommendations