Advertisement

Molecular Biology Reports

, Volume 40, Issue 2, pp 1625–1630 | Cite as

Development and multiplex PCR amplification of microsatellite markers in the commercial clam Venerupis rhomboides (Mollusca: Bivalvia)

  • Ginna Chacón
  • Alberto Arias-Pérez
  • Josefina Méndez
  • Ana InsuaEmail author
  • Ruth Freire
Article

Abstract

Venerupis rhomboides is a commercial clam whose production could be enhanced through effective management of natural and hatchery stocks. This study provides the first panel of microsatellite markers for the exploitation of this species according to genetic criteria. A total of 22 polymorphic microsatellite loci were isolated and characterized from two genomic libraries enriched for different motifs. The number of alleles per locus ranged from 2 to 14 in a sample of 20 clams from Spain, and the observed and expected heterozygosity from 0 to 0.95 and 0.05–0.901, respectively. Sixteen loci were in agreement with Hardy–Weinberg equilibrium after sequential Bonferroni correction and linkage disequilibrium between loci pairs was not detected. To reduce the cost of the genotyping process, tri- and pentaplex PCRs, amplifying a total of 13 microsatellites loci were optimized. The microsatellites developed here represent the first nuclear markers described in V. rhomboides and will be useful tools for genetic studies involving assessment of genetic variation and population structure of natural and cultivated populations, assignment testing, construction of genetic linkage maps and dissection of production traits.

Keywords

Venerupis rhomboides Microsatellite markers Multiplex PCR Genetic variation 

Notes

Acknowledgments

We thank Felix Cerqueira from the Ferrol Association of Fishermen for supplying the clam samples and Jose García Gil for his technical assistance. This work was supported by the Consellería de Economía e Industria (Xunta de Galicia) through project 09MMA030508PR.

References

  1. 1.
    Tebble N (1966) British bivalve seashells. A handbook for identification. Trustees of the British Museum (Natural History), EdinburghGoogle Scholar
  2. 2.
    Bert TM, Crawford CR, Tringali MD, Seyoum S, Galvin JL, Higham M, Lund C (2007) Genetic management of hatchery-based stock enhancement. In: Bert TM (ed) Ecological and genetic implications of aquaculture activities. Springer, Dordrecht, pp 123–174CrossRefGoogle Scholar
  3. 3.
    Liu ZJ, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37CrossRefGoogle Scholar
  4. 4.
    Arif IA, Bakir MA, Khan HA, Al Farhan AH, Al Homaidan AA, Bahkali AH, Al Sadoon M, Shobrak M (2010) A brief review of molecular techniques to assess plant diversity. Int J Mol Sci 11:2079–2096PubMedCrossRefGoogle Scholar
  5. 5.
    Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465PubMedCrossRefGoogle Scholar
  6. 6.
    Taris N, Baron S, Sharbel TF, Sauvage C, Boudry P (2005) A combined microsatellite multiplexing and boiling DNA extraction method for high-throughput parentage analyses in the Pacific oyster (Crassostrea gigas). Aquac Res 36:516–518CrossRefGoogle Scholar
  7. 7.
    Li Y, Wongprasert K, Shekhar M, Ryan J, Dierens L, Meadows J, Preston N, Coman G, Lyons RE (2007) Development of two microsatellite multiplex systems for black tiger shrimp Penaeus monodon and its application in genetic diversity study for two populations. Aquaculture 266:279–288CrossRefGoogle Scholar
  8. 8.
    Fernández-Tajes J, Méndez J (2007) Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region. J Agric Food Chem 55:7278–7282PubMedCrossRefGoogle Scholar
  9. 9.
    Walsh PS, Metzger DA, Higuchi R (1991) Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–510PubMedGoogle Scholar
  10. 10.
    Billote N, Lagoda PJL, Risterucci AM, Baurens FC (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  11. 11.
    Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760PubMedGoogle Scholar
  12. 12.
    Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580PubMedCrossRefGoogle Scholar
  13. 13.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  14. 14.
    Meglécz E (2007) MICROFAMILY (version 1): a computer program for detecting flanking-region similarities among different microsatellite loci. Mol Ecol Notes 7:18–20CrossRefGoogle Scholar
  15. 15.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  16. 16.
    Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517PubMedCrossRefGoogle Scholar
  17. 17.
    Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, MontpellierGoogle Scholar
  18. 18.
    Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106CrossRefGoogle Scholar
  19. 19.
    Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  20. 20.
    Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  21. 21.
    Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455PubMedGoogle Scholar
  22. 22.
    Fernández A, García T, González I, Asensio L, Rodríguez MA, Hernández PE, Martín R (2002) Polymerase chain reaction- restriction fragment length polymorphism analysis of a 16S rRNA gene fragment for authentication of four clam species. J Food Protect 65:692–695Google Scholar
  23. 23.
    Jones DB, Zenger KR, Jerry DR (2011) In silico whole-genome EST analysis reveals 2322 novel microsatellites for the silver-lipped pearl oyster, Pinctada maxima. Mar Genomics 4:287–290PubMedCrossRefGoogle Scholar
  24. 24.
    Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  25. 25.
    Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509PubMedCrossRefGoogle Scholar
  26. 26.
    Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623PubMedCrossRefGoogle Scholar
  27. 27.
    Wang Y, Wang X, Wan A, Guo X (2010) A 16-microsatellite multiplex assay for parentage assignment in the eastern oyster (Crassostrea virginica Gmelin). Aquaculture 308:528–533CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Ginna Chacón
    • 1
  • Alberto Arias-Pérez
    • 1
  • Josefina Méndez
    • 1
  • Ana Insua
    • 1
    Email author
  • Ruth Freire
    • 1
  1. 1.Departamento de Biologia Celular y MolecularUniversidade da CoruñaA CoruñaSpain

Personalised recommendations