Advertisement

Molecular Biology Reports

, Volume 40, Issue 2, pp 1227–1239 | Cite as

Isolation and characterization of a gene from Medicago sativa L., encoding a bZIP transcription factor

  • Yan Li
  • Yan Sun
  • Qingchuan YangEmail author
  • Feng Fang
  • Junmei Kang
  • Tiejun Zhang
Article

Abstract

A full-length cDNA of 1,537 nucleotides was cloned from Medicago sativa L. cv. “Zhongmu No. 1” by rapid amplification of cDNA ends. It was designated as MsZIP, encoding a protein of 340 amino acids. The protein molecular weight was 36.43 kDa, and the theoretical isoelectric point was 5.72. The MsZIP preferentially localized in nucleus and have signal peptide. Blast analysis revealed that MsZIP shared the highest homology with some bZIP proteins of M. truncatula. The transcript of MsZIP was strongly enriched in leaf compared with root and stem of mature alfalfa plants. MsZIP was strongly induced by 15 % PEG6000 (polyethylene glycol), 50 μM abscisic acid, 200 mM NaCl, 70 μM gibberellic acid, 5 mM salicylic acid and 200 μM methyl jasmonate. Physiological resistance parameters were measured in the transgenic tobacco. Malondialdehyde content, relative water content, soluble sugar content, soluble protein content and proline content in transgenic tobacco increased compared with non-transgenic tobacco under salt stress or drought stress. The results showed that accumulation of the MsZIP protein in the vegetative tissues of transgenic plants enhanced their tolerance to osmotic pressure stress. These results demonstrate a role for the MsZIP protein in stress protection and suggest the potential of the MsZIP gene for genetic engineering of salt tolerance and drought tolerance.

Keywords

Medicago SativaGene cloning Subcellular localization Real time fluorescent quantitative PCR analysis Transgenic tobacco analysis 

References

  1. 1.
    Niu X, Renshaw-Gegg L, Miller L, Guiltinan MJ (1999) Bipartite determinants of DNA binding specificity of plant basic leucine zipper protein. Plant Mol Biol 41:1–13. doi: 10.1023/A:1006206011502 PubMedCrossRefGoogle Scholar
  2. 2.
    Lee SC, Choi HW, Hwang IS, du Choi S, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224:1209–1225. doi: 10.1007/s00425-006-0302-4 PubMedCrossRefGoogle Scholar
  3. 3.
    Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS et al (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its over expression affects abscisic acid sensitivity. Plant Physiol 153:716–727. doi: 10.1104/pp.110.154617 PubMedCrossRefGoogle Scholar
  4. 4.
    Alonso R, On˜ate-Sa′nchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dro¨ge-Laser W (2009) A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell 21:1747–1761. doi: 10.1105/tpc.108.062968 PubMedCrossRefGoogle Scholar
  5. 5.
    Mallappa C, Yadav V, Negi P, Chattopadhyay S (2006) A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J Biol Chem 281:22190–22199. doi: 10.1074/jbc.M601172200 PubMedCrossRefGoogle Scholar
  6. 6.
    Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683. doi: 10.1007/s11103-008-9298-4 PubMedCrossRefGoogle Scholar
  7. 7.
    Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350. doi: 10.1104/pp.107.112821 PubMedCrossRefGoogle Scholar
  8. 8.
    Fan WH, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389. doi: 10.1105/tpc.001628 PubMedCrossRefGoogle Scholar
  9. 9.
    Choi H, Hong JH, Ha J, Kang JY, Kim SY (2000) ABFS a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730. doi: 10.1074/jbc.275.3.1723 PubMedCrossRefGoogle Scholar
  10. 10.
    Casaretto J, Ho T (2003) The transcription factors HvABl5 and HvVPl are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15:271–284PubMedCrossRefGoogle Scholar
  11. 11.
    Brocard IM, Lynch TJ, Finkelstein RR (2002) Regulation and role of the Arabidopsis ABA-insensitive 5 gene in ABA, sugar and stress response. Plant Physiol 129:1533–1543. doi: 10.1104/pp.005793 PubMedCrossRefGoogle Scholar
  12. 12.
    Kuhlmann M, Horvay K, Strathmann A, Heinekamp T, Fischer U et al (2003) The alphahelical DI domain of the tobacco bZIP transcription factor BZI-l interacts with the ankyrin-repeat protein ANKl and is important for BZI-l function both in auxin signaling and pathogen response. J Biol Chem 278:8786–8794PubMedCrossRefGoogle Scholar
  13. 13.
    Schlogl PS, Nogueira FT, Drummond R, Felix JM, De Rosa Jr VE, Vicentini R et al (2008) Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep 27:335–345. doi: 10.1007/s00299-007-0468-7 PubMedCrossRefGoogle Scholar
  14. 14.
    Bai JR (1990) Development and exploitation of alfalfa germplasm in China. Chin J Grassland 4:57–60Google Scholar
  15. 15.
    Yang QC, Sun Y, Kang JM (2005) Research on the advancement of salt tolerant genes in alfalfa. Acta Agrestia Sin 13(3):253–256Google Scholar
  16. 16.
    Bai YQ, Yang QC, Kang JM, Sun Y, Gruber M, Chao YH (2011) Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1. Mol Biol Rep http://www.springerlink.com/content/15m1rv4w55386800/. Accessed 18 Jun 2011
  17. 17.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  18. 18.
    Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877. doi: 10.1093/nar/16.20.9877 PubMedCrossRefGoogle Scholar
  19. 19.
    Horsch RB, Fry JE, Hoffmann NL (1985) A simple and general method for transferring genes into plants. Science 227:1129–1131Google Scholar
  20. 20.
    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8(19):4321–4325PubMedCrossRefGoogle Scholar
  21. 21.
    Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366. doi: 10.1007/BF02180062 CrossRefGoogle Scholar
  22. 22.
    Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198PubMedCrossRefGoogle Scholar
  23. 23.
    Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660PubMedGoogle Scholar
  24. 24.
    Lu GJ, Gao CX, Zheng XN, Han BM (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615. doi: 10.1007/s00425-008-0857-3 PubMedCrossRefGoogle Scholar
  25. 25.
    Amir Hossain M, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H et al (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566. doi: 10.1007/s11103-009-9592-9 PubMedCrossRefGoogle Scholar
  26. 26.
    Rodriguez-Uribe L, O’Connell MA (2006) A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius). J Exp Bot 57:1391–1398. doi: 10.1093/jxb/erj118 PubMedCrossRefGoogle Scholar
  27. 27.
    Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J et al (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240. doi: 10.1007/s00425-008-0731-3 PubMedCrossRefGoogle Scholar
  28. 28.
    Nieval C, Peter K Busk, Domınguez-Puigjaner E, Lumbreras V, Testillano PS, Risueno MC, Pages M (2005) Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol Biol 58:899–914CrossRefGoogle Scholar
  29. 29.
    Yamaguchi-Shinozaki K, Kasuga M, Liu Q, Nakashima K, Sakuma Y, Abe H, Shinwari ZK, Seki M, Shinozaki K (2002) Biological mechanisms of drought stress response. JIRCAS Work Rep 23:1–8Google Scholar
  30. 30.
    Ramanjulu S, Bartels D (2002) Drought and desiccation induced modulation of gene expression in plants. Plant Cell Environ 25:141–151PubMedCrossRefGoogle Scholar
  31. 31.
    Okada A, Okada K, Koji Miyamoto, Koga J, Shibuya N, Nojiri H, Yamane H (2009) OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 284(39):26510–26518. doi: 10.1074/jbc.M109.036871 PubMedCrossRefGoogle Scholar
  32. 32.
    Xu ZS, Ni ZY, Liu L, Nie LN, Li LC, Chen M, Ma YZ (2008) Characterization of the TaAIDFa gene encoding a CRT/DRE binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics 280:497–508. doi: 10.1007/s11103-005-8407-x PubMedCrossRefGoogle Scholar
  33. 33.
    Valentovic P, Luxova M, Kolarovic L, Gasparikova O (2006) Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ 52:186–191Google Scholar
  34. 34.
    Wang YC, Gao CQ, Liang YN, Wang C, Yang CP, Liu GF (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167:222–230PubMedCrossRefGoogle Scholar
  35. 35.
    Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R (2003) The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J 34:257–267. doi: 10.1046/j.1365-313X.2003.01719.x PubMedCrossRefGoogle Scholar
  36. 36.
    Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ 54:89–99Google Scholar
  37. 37.
    Chen C, Tao C, Peng H, Ding Y (2007) Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculata (L.) ssp. sesquipedalis Verdc.). J Hered 98:655–665. doi: 10.1093/jhered/esm084 PubMedCrossRefGoogle Scholar
  38. 38.
    Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290. doi: 10.1023/A:1007266932623 CrossRefGoogle Scholar
  39. 39.
    Maggio A, Reddy MP, Joly RJ (2000) Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salt. Environ Exp Bot 44:31–38. doi: 10.1016/S0098-8472(00)00051-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Yan Li
    • 1
  • Yan Sun
    • 2
  • Qingchuan Yang
    • 1
    Email author
  • Feng Fang
    • 3
  • Junmei Kang
    • 1
  • Tiejun Zhang
    • 1
  1. 1.Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Institute of Grassland Science, China Agricultural UniversityBeijingPeople’s Republic of China
  3. 3.Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations