Molecular Biology Reports

, Volume 39, Issue 12, pp 10111–10119 | Cite as

Promoter hypermethylation in primary squamous cell carcinoma of the oral cavity and oropharynx: a study of a Brazilian cohort

  • Melissa de Freitas Cordeiro-Silva
  • Elaine Stur
  • Lidiane Pignaton Agostini
  • José Roberto Vasconcelos de Podestá
  • José Carlos de Oliveira
  • Mariana Silveira Soares
  • Elismauro Francisco Mendonça
  • Sônia Alves Gouvea
  • Sandra Ventorin Von Zeidler
  • Iúri Drumond Louro


Epigenetic silencing of cancer-related genes plays an important role in oral/oropharyngeal squamous cell carcinoma (OSCC). We evaluated promoter hypermethylation of 4 cancer-related genes in OSCCs of a Brazilian cohort and determined its relationship with exposure to alcohol, tobacco, HPV infection and clinicopathological parameters. CDKN2A (cyclin-dependent kinase inhibitor 2A or p16), SFN (stratifin or 14-3-3 σ), EDNRB (endothelin receptor B) and RUNX3 (runt-related transcript factor-3) had their methylation patterns evaluated by MSP analysis in OSCC tumors (n = 45). HPV detection was carried out by PCR/RFLP. Aberrant methylation was detected in 44/45 (97.8 %) OSCC; 24.4 % at CDKN2A, 77.8 % at EDNRB, 17.8 % at RUNX3 and 97.8 % at SFN gene. There was no significant association between methylation patterns and clinical parameters. HPV (subtype 16) was detected in 3 out of 45 patients (6 %). Our findings indicate that HPV infection is uncommon and methylation is frequent in Brazilian OSCCs, however, EDNRB and SFN gene methylation are not suitable OSCC biomarkers due to indistinct methylation in tumoral and normal samples. In contrast, CDKN2A and RUNX3 genes could be considered differentially methylated genes and potential tumor markers in OSCCs.


Oral/oropharyngeal squamous cell carcinoma Hypermethylation CDKN2A EDNRB RUNX3 SFN HPV 


  1. 1.
    Scully C, Bedi R (2000) Ethnicity and oral cancer. Lancet Oncol 1:37–42PubMedCrossRefGoogle Scholar
  2. 2.
    Parkin DM, Bray F, Ferlay J, Pisani P (2002) Global cancer statistics. CA: Cancer J Clin 2:74–108Google Scholar
  3. 3.
    Silverman S Jr. (2001) Demographics and occurrence of oral and pharyngeal cancers: the outcomes, the trends, the challenge. J Am Dent Assoc 132:7–11Google Scholar
  4. 4.
    Scully C, Bagan J (2009) Oral squamous cell carcinoma overview. Oral Oncol 45:301–308PubMedCrossRefGoogle Scholar
  5. 5.
    Miller CS, Johnstone BM (2001) Human papillomavirus as a risk factor for oral squamous cell carcinoma: a meta-analysis, 1982–1997. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 91:622–635PubMedCrossRefGoogle Scholar
  6. 6.
    Ringström E, Peters E, Hasegawa M, Posner M, Liu M, Kelsey KT (2002) Human papillomavirus type 16 and squamous cell carcinoma of the head and neck. Clin Cancer Res 8:3187–3192PubMedGoogle Scholar
  7. 7.
    Kreimer AR, Clifford GM, Boyle P, Franceschi S (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systemic review. Cancer Epidemiol Biomarkers Prev 14:467–475PubMedCrossRefGoogle Scholar
  8. 8.
    Fakhry C, Gillison ML (2006) Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol 24:2606–2611PubMedCrossRefGoogle Scholar
  9. 9.
    Stebbing J, Bower M, Syed N, Smith P, Yu V, Crook T (2006) Epigenetics: an emerging technology in the diagnosis and treatment of cancer. Pharmacogenomics 7:747–757PubMedCrossRefGoogle Scholar
  10. 10.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054PubMedCrossRefGoogle Scholar
  11. 11.
    Ha PK, Califano JA (2006) Promoter methylation and inactivation of tumoursuppressor genes in oral squamous-cell carcinoma. Lancet Oncol 7:77–82PubMedCrossRefGoogle Scholar
  12. 12.
    Supić G, Kozomara R, Branković-Magić M, Jović N, Magić Z (2009) Gene hypermethylation in tumor tissue of advanced oral squamous cell carcinoma patients. Oral Oncol 45:1051–1057PubMedCrossRefGoogle Scholar
  13. 13.
    Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229PubMedGoogle Scholar
  14. 14.
    Marsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT (2004) Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 23:1000–1004PubMedCrossRefGoogle Scholar
  15. 15.
    Tran TN, Liu Y, Takagi M, Yamaguchi A, Fujii H (2005) Frequent promoter hypermethylation of RASSF1A and p16INK4a and infrequent allelic loss other than 9p21 in betel-associated oral carcinoma in a Vietnamese non-smoking/non-drinking female population. J Oral Pathol Med 34:150–156PubMedCrossRefGoogle Scholar
  16. 16.
    Marsit CJ, McClean MD, Furniss CS, Kelsey KT (2006) Epigenetic inactivation of the SFRP genes is associated with drinking, smoking and HPV in head and neck squamous cell carcinoma. Int J Cancer 119:1761–1766PubMedCrossRefGoogle Scholar
  17. 17.
    Marsit CJ, Houseman EA, Schned AR, Karagas MR, Kelsey KT (2007) Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer. Carcinogenesis 28:1745–1751PubMedCrossRefGoogle Scholar
  18. 18.
    Hasegawa M, Nelson HH, Peters E, Ringstrom E, Posner M, Kelsey KT (2002) Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 21:4231–4236PubMedCrossRefGoogle Scholar
  19. 19.
    Dikshit RP, Gillio-Tos A, Brennan P et al (2007) Hypermethylation, risk factors, clinical characteristics, and survival in 235 patients with laryngeal and hypopharyngeal cancers. Cancer 110:1745–1751PubMedCrossRefGoogle Scholar
  20. 20.
    Marsit CJ, Posner MR, McClean MD, Kelsey KT (2008) Hypermethylation of Ecadherin is an independent predictor of improved survival in head and neck squamous cell carcinoma. Cancer 113:1566–1571PubMedCrossRefGoogle Scholar
  21. 21.
    Zheng DL, Zhang L, Cheng N et al (2009) Epigenetic modification induced by hepatitis B virus × protein via interaction with de novo DNA methyltransferase DNMT3A. J Hepatol 50:377–387PubMedCrossRefGoogle Scholar
  22. 22.
    Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS (2002) The Epstein Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci USA 99:10084–10089PubMedCrossRefGoogle Scholar
  23. 23.
    Shamay M, Krithivas A, Zhang J, Hayward SD (2006) Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi’s sarcoma-associated herpesvirus LANA. Proc Natl Acad Sci USA 103:14554–14559PubMedCrossRefGoogle Scholar
  24. 24.
    Balderas-Loaeza A, Anaya-Saavedra G, Ramirez-Amador VA et al (2007) Human papillomavirus-16 DNA methylation patterns support a causal association of the virus with oral squamous cell carcinomas. Int J Cancer 120:2165–2169PubMedCrossRefGoogle Scholar
  25. 25.
    Wu MF, Cheng YW, Lai JC et al (2005) Frequent p16INK4a promoter hypermethylation in human papillomavirus-infected female lung cancer in Taiwan. Int J Cancer 113:440–445PubMedCrossRefGoogle Scholar
  26. 26.
    Au Yeung CL, Tsang WP, Tsang TY, Co NN, Yau PL, Kwok TT (2010) HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53. Oncol Rep 24:1599–1604PubMedGoogle Scholar
  27. 27.
    Leonard SM, Wei W, Collins SI et al (2012) Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women. Carcinogenesis. doi:10.1093/carcin/bgs157 PubMedGoogle Scholar
  28. 28.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylationspecific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826PubMedCrossRefGoogle Scholar
  29. 29.
    Ferguson AT, Evron E, Umbricht CB et al (2000) High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97:6049–6054PubMedCrossRefGoogle Scholar
  30. 30.
    Jerónimo C, Henrique R, Campos PF et al (2003) Endothelin B receptor gene hypermethylation in prostate adenocarcinoma. J Clin Pathol 56: 52–5Google Scholar
  31. 31.
    Kim TY, Lee HJ, Hwang KS et al (2004) Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma. Lab Invest 84:479–484PubMedCrossRefGoogle Scholar
  32. 32.
    Bender CM, Pao MM, Jones PA (1998) Inhibition of DNA methylation by 5-aza-20-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 58:95–101PubMedGoogle Scholar
  33. 33.
    Pao MM, Tsutsumi M, Liang G, Uzvolgyi E, Gonzales FA, Jones PA (2001) The endothelin receptor B (EDNRB) promoter displays heterogeneous, site specific methylation patterns in normal and tumor cells. Hum Mol Genet 10:903–910PubMedCrossRefGoogle Scholar
  34. 34.
    Kim WJ, Kim EJ, Jeong P et al (2005) RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res 65:9347–9354PubMedCrossRefGoogle Scholar
  35. 35.
    Negraes PD, Favaro FP, Camargo JL et al (2008) DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection. BMC Cancer 8:238PubMedCrossRefGoogle Scholar
  36. 36.
    Husnjak K, Grce M, Magdić L, Pavelić K (2000) Comparison of five different polymerase chain reaction methods for detection of human papillomavirus in cervical cell specimens. J Virol Methods 88(2):125–134PubMedCrossRefGoogle Scholar
  37. 37.
    Shaw RJ, Liloglou T, Rogers SN et al (2006) Promoter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer 94:561–568PubMedCrossRefGoogle Scholar
  38. 38.
    Sinha P, Bahadur S, Thakar A et al (2009) Significance of promoter hypermethylation of p16 gene for margin assessment in carcinoma tongue. Head Neck 31:1423–1430PubMedCrossRefGoogle Scholar
  39. 39.
    Taioli E, Ragin C, Wang XH et al (2009) Recurrence in oral and pharyngeal cancer is associated with quantitative MGMT promoter methylation. BMC Cancer 6:354CrossRefGoogle Scholar
  40. 40.
    Kaur J, Demokan S, Tripathi SC et al (2010) Promoter hypermethylation in Indian primary oral squamous cell carcinoma. Int J Cancer 127:2367–2373PubMedCrossRefGoogle Scholar
  41. 41.
    Yakushiji T, Noma H, Shibahara T et al (2001) Analysis of a role for p16/CDKN2 expression and methylation patterns in human oral squamous cell carcinoma. Bull Tokyo Dent Coll 42:159–168PubMedCrossRefGoogle Scholar
  42. 42.
    Cordeiro-Silva MF, Oliveira ZF, de Podestá JR, Gouvea SA, Von Zeidler SV, Louro ID (2011) Methylation analysis of cancer-related genes in non-neoplastic cells from patients with oral squamous cell carcinoma. Mol Biol Rep 38:5435–5441CrossRefGoogle Scholar
  43. 43.
    Ogi K, Toyota M, Ohe-Toyota M et al (2002) Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clin Cancer Res 8:3164–3171PubMedGoogle Scholar
  44. 44.
    Sailasree R, Abhilash A, Sathyan KM, Nalinakumari KR, Thomas S, Kannan S (2008) Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol Biomarkers Prev 17:414–420PubMedCrossRefGoogle Scholar
  45. 45.
    Demokan S, Chang X, Chuang A et al. (2010) KIF1A and EDNRB are differentially methylated in primary HNSCC and salivary rinses. Int J Cancer 127: 2351-9Google Scholar
  46. 46.
    Toyooka S, Maruyama R, Toyooka KO et al (2003) Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. Int J Cancer 103:153–160PubMedCrossRefGoogle Scholar
  47. 47.
    Ku JL, Kang SB, Shin YK et al (2004) Promoter hypermethylation downregulates RUNX3 gene expression in colorectal cancer cell lines. Oncogene 23: 6736–42Google Scholar
  48. 48.
    Ito K, Liu Q, Salto-Tellez M et al (2005) RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res 65:7743–7750PubMedCrossRefGoogle Scholar
  49. 49.
    Kim WJ, Kim EJ, Jeong P et al (2005) RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res 65:9347–9354PubMedCrossRefGoogle Scholar
  50. 50.
    Mor T, Nomoto S, Koshikawa K et al (2005) Decreased expression and frequent allelic inactivation of the RUNX3 gene at 1p36 in human hepatocellular carcinoma. Liver Int 25:380–388CrossRefGoogle Scholar
  51. 51.
    Yanada M, Yaoi T, Shimada J et al (2005) Frequent hemizygous deletion at 1p36 and hypermethylation downregulate RUNX3 expression in human lung cancer cell lines. Oncol Rep 14:817–822PubMedGoogle Scholar
  52. 52.
    Gao F, Huang C, Lin M et al (2009) Frequent inactivation of RUNX3 by promoter hypermethylation and protein mislocalization in oral squamous cell carcinomas. J Cancer Res Clin Oncol 135:739–747PubMedCrossRefGoogle Scholar
  53. 53.
    Gasco M, Bell AK, Heath V et al (2002) Epigenetic inactivation of 14-3-3 d in oral carcinoma: association with p16(INK4a) silencing and human papillomavirus negativity. Cancer Res 62:2072–2076PubMedGoogle Scholar
  54. 54.
    Bhawal UK, Tsukinoki K, Sasahira T et al (2007) Methylation and intratumoural heterogeneity of 14-3-3 sigma in oral cancer. Oncol Rep 18: 817–24Google Scholar
  55. 55.
    Bhatia K, Siraj AK, Hussain A, Bu R, Gutierrez MI (2003) The tumor suppressor gene 14-3-3σ is commonly methylated in normal and malignant lymphoid cells. Cancer Epidemiol Biomarkers Prev 12:165–169PubMedGoogle Scholar
  56. 56.
    Lombaerts M, Middeldorp JW, van der Weide E et al (2004) Infiltrating leukocytes confound the detection of E-cadherin promoter methylation in tumors. Biochem Biophys Res Commun 319:697–704PubMedCrossRefGoogle Scholar
  57. 57.
    Dietrich D, Lesche R, Tetzner R et al (2009) Analysis of DNA methylation of multiple genes in microdissected cells from formalin-fixed and paraffin-embedded tissues. J Histochem Cytochem 57:477–489PubMedCrossRefGoogle Scholar
  58. 58.
    Gannot G, Gannot I, Vered H, Buchner A, Keisari Y (2002) Increase in immune cell infiltration with progression of oral epithelium from hyperkeratosis to dysplasia and carcinoma. Br J Cancer 86:1444–1448PubMedCrossRefGoogle Scholar
  59. 59.
    Brock MV, Gou M, Akiyama Y et al (2003) Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res 9:2912–2919PubMedGoogle Scholar
  60. 60.
    de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ (1995) The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papilomavirus detection by PCR. J Gen Virol 76:1057–1062PubMedCrossRefGoogle Scholar
  61. 61.
    Smith EM, Rubenstein LM, Haugen TH, Hamsikova E, Turek LP (2010) Tobacco and alcohol use increases the risk of both HPV-associated and HPV independent head and neck cancers. Cancer Causes Control 21(9):1369–1378PubMedCrossRefGoogle Scholar
  62. 62.
    Smith EM, Rubenstein LM, Haugen TH, Pawlita M, Turek LP (2012) Complex etiology underlies risk and survival in head and neck cancer human papillomavirus, tobacco, and alcohol: a case for multifactor disease. J Oncol 2012:571862PubMedCrossRefGoogle Scholar
  63. 63.
    Gillison ML, D’Souza G, Westra W et al (2008) Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst 100:407–420PubMedCrossRefGoogle Scholar
  64. 64.
    Machado J, Reis PP, Zhang T et al (2010) Low prevalence of human papillomavirus in oral cavity carcinomas. Head Neck Oncol 12:2–6Google Scholar
  65. 65.
    Liang XH, Lewis J, Foote R, Smith D, Kademani D (2008) Prevalence and significance of human papillomavirus in oral tongue cancer: the Mayo Clinic experience. J Oral Maxillofac Surg 66(9):1875–1880PubMedCrossRefGoogle Scholar
  66. 66.
    Isayeva T, Li Y, Maswahu D, Brandwein-Gensler M (2012) Human papillomavirus in non-oropharyngeal head and neck cancers: a systematic literature review. Head Neck Pathol 1:104–120CrossRefGoogle Scholar
  67. 67.
    Acay R, Rezende N, Fontes A, Aburad A, Nunes F, Sousa S (2008) Human papillomavirus as a risk factor in oral carcinogenesis: a study using in situ hybridization with signal amplification. Oral Microbiol Immunol 23:271–274PubMedCrossRefGoogle Scholar
  68. 68.
    de Spíndula-Filho JV, da Cruz AD, Oton-Leite AF et al (2011) Oral squamous cell carcinoma versus oral verrucous carcinoma: an approach to cellular proliferation and negative relation to human papillomavirus (HPV). Tumour Biol 32:409–416PubMedCrossRefGoogle Scholar
  69. 69.
    Soares RC, Oliveira MC, de Souza LB, Costa Ade L, Pinto LP (2008) Detection of HPV DNA and immunohistochemical expression of cell cycle proteins in oral carcinoma in a population of Brazilian patients. J Appl Oral Sci 16:340–344PubMedCrossRefGoogle Scholar
  70. 70.
    Rivero ER, Nunes FD (2006) HPV in oral squamous cell carcinomas of a Brazilian population: amplification by PCR. Br Oral Res 20(1):21–4Google Scholar
  71. 71.
    Furrer VE, Benitez MB, Furnes M, Lanfranchi HE, Modesti NM (2006) Biopsy vs superficial scraping: detection of human papillomavirus 6, 11, 16, and 18 in potentially malignant and malignant oral lesions. J Oral Pathol Med 35:338–344PubMedCrossRefGoogle Scholar
  72. 72.
    Anaya-Saavedra G, Ramírez-Amador V, Irigoyen-Camacho ME et al (2008) High association of human papillomavirus infection with oral cancer: a case-control study. Arch Med Res 39:189–197PubMedCrossRefGoogle Scholar
  73. 73.
    Chang F, Syrjänen S, Kellokoski J, Syrjänen K (1991) Human papillomavirus (HPV) infections and their associations with oral disease. J Oral Pathol Med 20:305–317PubMedCrossRefGoogle Scholar
  74. 74.
    Schwartz SR, Yueh B, McDougall JK, Daling JR, Schwartz SM (2001) Human papillomavirus infection and survival in oral squamous cell cancer: a population-based study. Otolaryngol Head Neck Surg 125:1–9PubMedCrossRefGoogle Scholar
  75. 75.
    Ringström E, Peters E, Hasegawa M, Posner M, Liu M, Kelsey KT (2002) Human papillomavirus type 16 and squamous cell carcinoma of the head and neck. Clin Cancer Res 8:3187–3192PubMedGoogle Scholar
  76. 76.
    Smith EM, Ritchie JM, Summersgill KF et al (2004) (2004) Age, sexual behavior and human papillomavirus infection in oral cavity and oropharyngeal cancers. Int J Cancer 108:766–772PubMedCrossRefGoogle Scholar
  77. 77.
    van Monsjou HS, van Velthuysen ML, van den Brekel MW, Jordanova ES, Melief CJ, Balm AJ (2012) Human papillomavirus status in young patients with head and neck squamous cell carcinoma. Int J Cancer 130(8):1806–1812PubMedCrossRefGoogle Scholar
  78. 78.
    Fonseca-Silva T, Farias LC, Cardoso CM et al (2012) Analysis of p16(CDKN2A) methylation and HPV-16 infection in oral mucosal dysplasia. Pathobiology 79(2):94–100PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Melissa de Freitas Cordeiro-Silva
    • 1
  • Elaine Stur
    • 1
  • Lidiane Pignaton Agostini
    • 1
  • José Roberto Vasconcelos de Podestá
    • 2
  • José Carlos de Oliveira
    • 3
  • Mariana Silveira Soares
    • 4
  • Elismauro Francisco Mendonça
    • 4
  • Sônia Alves Gouvea
    • 5
  • Sandra Ventorin Von Zeidler
    • 6
  • Iúri Drumond Louro
    • 1
  1. 1.Núcleo de Genética Humana e Molecular Departamento de Ciências BiológicasCentro de Ciências Humanas e Naturais Universidade Federal do Espírito SantoVitoriaBrazil
  2. 2.Programa de Prevenção e Detecção Precoce do Câncer BucalSetor de Cirurgia de Cabeça e Pescoço Hospital Santa Rita de CássiaVitoriaBrazil
  3. 3.Divisão de Cirurgia de Cabeça e PescoçoHospital Araújo Jorge, Associação de Combate ao Câncer de GoiásGoiâniaBrazil
  4. 4.Faculdade de OdontologiaUniversidade Federal de Goiás Campus 1, Sem Número, Praça UniversitáriaGoiâniaBrazil
  5. 5.Departamento de Ciências Fisiológicas Centro de Ciências da SaúdeUniversidade Federal do Espírito SantoVitoriaBrazil
  6. 6.Departamento de Patologia Centro de Ciências da SaúdeUniversidade Federal do Espírito SantoVitoriaBrazil

Personalised recommendations