Molecular Biology Reports

, Volume 39, Issue 9, pp 9193–9201 | Cite as

The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity

  • Chuangang You
  • Chunmao Han
  • Xingang Wang
  • Yurong Zheng
  • Qiyin Li
  • Xinlei Hu
  • Huafeng Sun
Article

Abstract

Nanotechnology is a highly promising field, with nanoparticles produced and utilized in a wide range of commercial products. Silver nanoparticles (AgNPs) has been widely used in clothing, electronics, bio-sensing, the food industry, paints, sunscreens, cosmetics and medical devices, all of which increase human exposure and thus the potential risk related to their short- and long-term toxicity. Many studies indicate that AgNPs are toxic to human health. Interestingly, the majority of these studies focus on the interaction of the nano-silver particle with single cells, indicating that AgNPs have the potential to induce the genes associated with cell cycle progression, DNA damage and mitochondrial associated apoptosis. AgNPs administered through any method were subsequently detected in blood and were found to cause deposition in several organs. There are very few studies in rats and mice involving the in vivo bio-distribution and toxicity, organ accumulation and degradation, and the possible adverse effects and toxicity in vivo are only slowly being recognized. In the present review, we summarize the current data associated with the increased medical usage of nano-silver and its related nano-materials, compare the mechanism of antibiosis and discuss the proper application of nano-silver particles.

Keywords

Silver nanoparticles Mechanism Application 

References

  1. 1.
    Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914CrossRefPubMedGoogle Scholar
  2. 2.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478CrossRefPubMedGoogle Scholar
  4. 4.
    Hirano S (2009) A current overview of health effect research on nanoparticles. Environ Health Prev Med 14:223–225CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3:191–192CrossRefPubMedGoogle Scholar
  6. 6.
    Seiler HG, Sigel H, Sigel A (1988) Handbook on toxicity of inorganic compounds. Marcel Dekker, New YorkGoogle Scholar
  7. 7.
    Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRefPubMedGoogle Scholar
  9. 9.
    Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006CrossRefPubMedGoogle Scholar
  10. 10.
    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602CrossRefPubMedGoogle Scholar
  11. 11.
    Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789CrossRefPubMedGoogle Scholar
  12. 12.
    Li YF, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980CrossRefPubMedGoogle Scholar
  13. 13.
    Cowart DA, Guida SM, Shah SI, Marsh AG (2011) Effects of Ag nanoparticles on survival and oxygen consumption of zebra fish embryos, Danio rerio. J Environ Sci Health A 46:1122–1128CrossRefGoogle Scholar
  14. 14.
    Posgai R, Cipolla-McCulloch CB, Murphy KR, Hussain SM, Rowe JJ, Nielsen MG (2011) Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85:34–42CrossRefPubMedGoogle Scholar
  15. 15.
    Vega-Villa KR, Takemoto JK, Yanez JA, Remsberg CM, Forrest ML, Davies NM (2008) Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev 60:929–938CrossRefPubMedGoogle Scholar
  16. 16.
    Paula MMD, Franco CV, Baldin MU, Larissa RSA, Tatiana BC, Savi GD, Bellato LF, Fiori WA, da Silva L (2009) Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater Sci Eng C 29:647–650CrossRefGoogle Scholar
  17. 17.
    Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960CrossRefGoogle Scholar
  18. 18.
    Lee BU, Yun SH, Ji JH, Bae GN (2008) Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles. J Microbiol Biotechnol 18:176–182PubMedGoogle Scholar
  19. 19.
    Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li QL, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723CrossRefPubMedGoogle Scholar
  20. 20.
    Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340CrossRefPubMedGoogle Scholar
  21. 21.
    Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1CrossRefGoogle Scholar
  22. 22.
    Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876CrossRefPubMedGoogle Scholar
  23. 23.
    Totaro P, Rambaldini M (2009) Efficacy of antimicrobial activity of slow release silver nanoparticles dressing in post-cardiac surgery mediastinitis. Interact Cardiovasc Thorac Surg 8:153–154CrossRefPubMedGoogle Scholar
  24. 24.
    Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024CrossRefPubMedGoogle Scholar
  25. 25.
    Xing ZC, Chae WP, Baek JY, Choi MJ, Jung Y, Kang IK (2010) In vitro assessment of antibacterial activity and cytocompatibility of silver-containing PHBV nanofibrous scaffolds for tissue engineering. Biomacromolecules 11:1248–1253CrossRefPubMedGoogle Scholar
  26. 26.
    Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391CrossRefPubMedGoogle Scholar
  27. 27.
    Chen J, Han CM, Lin XW, Tang ZJ, Su SJ (2006) [Effect of silver nanoparticle dressing on second degree burn wound]. Zhonghua Wai Ke Za Zhi 44:50–52PubMedGoogle Scholar
  28. 28.
    Niu M, Liu XG, Dai JM, Jia HS, Wei LQ, Xu BS (2009) Antibacterial activity of chitosan coated Ag-loaded nano-SiO2 composites. Carbohydr Polym 78:54–59CrossRefGoogle Scholar
  29. 29.
    Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci-Mater Med 21:807–813CrossRefPubMedGoogle Scholar
  30. 30.
    Wiegand C, Heinze T, Hipler UC (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17:511–521CrossRefPubMedGoogle Scholar
  31. 31.
    Olson ME, Wright JB, Lam K, Burrell RE (2000) Healing of porcine donor sites covered with silver-coated dressings. Eur J Surg 166:486–489CrossRefPubMedGoogle Scholar
  32. 32.
    Wright JB, Lam K, Buret AG, Olson ME, Burrell RE (2002) Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen 10:141–151CrossRefPubMedGoogle Scholar
  33. 33.
    Ip M, Lui SL, Poon VK, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55:59–63CrossRefPubMedGoogle Scholar
  34. 34.
    Bhol KC, Alroy J, Schechter PJ (2004) Anti-inflammatory effect of topical nanocrystalline silver cream on allergic contact dermatitis in a guinea pig model. Clin Exp Dermatol 29:282–287CrossRefPubMedGoogle Scholar
  35. 35.
    Bhol KC, Schechter PJ (2005) Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br J Dermatol 152:1235–1242CrossRefPubMedGoogle Scholar
  36. 36.
    Nadworny PL, Wang J, Tredget EE, Burrell RE (2008) Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 4:241–251PubMedGoogle Scholar
  37. 37.
    Nadworny PL, Wang J, Tredget EE, Burrell RE (2010) Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis. J Inflamm (Lond) 7:13CrossRefGoogle Scholar
  38. 38.
    Greulich C, Diendorf J, Gessmann J, Simon T, Habijan T, Eggeler G, Schildhauer TA, Epple M, Koller M (2011) Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater 7:3505–3514CrossRefPubMedGoogle Scholar
  39. 39.
    Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7:1813–1818CrossRefPubMedGoogle Scholar
  40. 40.
    Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350CrossRefPubMedGoogle Scholar
  41. 41.
    Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S (2010) Silver nano—a trove for retinal therapies. J Controlled Release 145:76–90CrossRefGoogle Scholar
  42. 42.
    Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S (2009) Silver nanoparticles inhibit VEGF-and IL-1beta-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnol 7:8CrossRefGoogle Scholar
  43. 43.
    Sheikpranbabu S, Kalishwaralal K, Lee KJ, Vaidyanathan R, Eom SH, Gurunathan S (2010) The inhibition of advanced glycation end-products-induced retinal vascular permeability by silver nanoparticles. Biomaterials 31:2260–2271CrossRefPubMedGoogle Scholar
  44. 44.
    Wang HJ, Yang L, Yang HY, Wang K, Yao WG, Jiang K, Huang XL, Zheng Z (2010) Antineoplastic activities of protein-conjugated silver sulfide nano-crystals with different shapes. J Inorg Biochem 104:87–91CrossRefPubMedGoogle Scholar
  45. 45.
    Sur I, Cam D, Kahraman M, Baysal A, Culha M (2010) Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 21:175104CrossRefPubMedGoogle Scholar
  46. 46.
    Asharani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Arakawa H, Neault JF, Tajmir-Riahi HA (2001) Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys J 81:1580–1587CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, Hussain SM, Hofmann MC (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116:577–589CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li PW, Kuo TH, Chang JH, Yeh JM, Chan WH (2010) Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol Lett 197:82–87CrossRefPubMedGoogle Scholar
  50. 50.
    Liu ZM, Stout JE, Boldin M, Rugh J, Diven WF, Yu VL (1998) Intermittent use of copper–silver ionization for Legionella control in water distribution systems: a potential option in buildings housing individuals at low risk of infection. Clin Infect Dis 26:138–140CrossRefPubMedGoogle Scholar
  51. 51.
    Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032CrossRefPubMedGoogle Scholar
  52. 52.
    Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353CrossRefPubMedGoogle Scholar
  53. 53.
    Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402CrossRefPubMedGoogle Scholar
  54. 54.
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074CrossRefPubMedGoogle Scholar
  56. 56.
    Choi OK, Hu ZQ (2009) Nitrification inhibition by silver nanoparticles. Water Sci Technol 59:1699–1702CrossRefPubMedGoogle Scholar
  57. 57.
    Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, Huang FL, Dong RX, Lin JJ (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30:5979–5987CrossRefPubMedGoogle Scholar
  58. 58.
    Gordon O, Vig Slenters T, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54:4208–4218CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wei L, Tang J, Zhang Z, Chen Y, Zhou G, Xi T (2010) Investigation of the cytotoxicity mechanism of silver nanoparticles in vitro. Biomed Mater 5:044103CrossRefPubMedGoogle Scholar
  60. 60.
    Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro 23:1076–1084CrossRefPubMedGoogle Scholar
  61. 61.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefPubMedGoogle Scholar
  62. 62.
    Vanwinkle BA, Bentley KLD, Malecki JM, Gunter KK, Evans IM, Elder A, Finkelstein JN, Oberdorster G, Gunter TE (2009) Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response. Nanotoxicology 3:307–318CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139CrossRefPubMedGoogle Scholar
  64. 64.
    Boonstra J, Post JA (2004) Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337:1–13CrossRefPubMedGoogle Scholar
  65. 65.
    AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRefPubMedGoogle Scholar
  66. 66.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38:439–447CrossRefPubMedGoogle Scholar
  68. 68.
    Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 19:975–983CrossRefPubMedGoogle Scholar
  69. 69.
    Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410CrossRefPubMedGoogle Scholar
  70. 70.
    Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, Gao Y, Zhao Y, Chai Z (2008) Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80CrossRefPubMedGoogle Scholar
  71. 71.
    Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269CrossRefPubMedGoogle Scholar
  72. 72.
    Hossain Z, Huq F (2002) Studies on the interaction between Ag(+) and DNA. J Inorg Biochem 91:398–404CrossRefPubMedGoogle Scholar
  73. 73.
    Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro 24:872–878CrossRefPubMedGoogle Scholar
  74. 74.
    Jacobsen NR, Pojana G, White P, Moller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A, Loft S, Wallin H (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol Mutagen 49:476–487CrossRefPubMedGoogle Scholar
  75. 75.
    Mroz RM, Schins RP, Li H, Drost EM, Macnee W, Donaldson K (2007) Nanoparticle carbon black driven DNA damage induces growth arrest and AP-1 and NFkappaB DNA binding in lung epithelial A549 cell line. J Physiol Pharmacol 58(Suppl 5):461–470PubMedGoogle Scholar
  76. 76.
    Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRefPubMedGoogle Scholar
  78. 78.
    Hussain SM, Schlager JJ (2009) Safety evaluation of silver nanoparticles: inhalation model for chronic exposure. Toxicol Sci 108:223–224CrossRefPubMedGoogle Scholar
  79. 79.
    Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807CrossRefPubMedGoogle Scholar
  80. 80.
    Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM, Monteiro-Riviere NA, Oberdorster G, Omenn GS, Pinkerton KE, Ramos KS, Rest KM, Sass JB, Silbergeld EK, Wong BA (2007) Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environ Health Perspect 115:1654–1659CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Chuangang You
    • 1
  • Chunmao Han
    • 1
  • Xingang Wang
    • 1
  • Yurong Zheng
    • 1
  • Qiyin Li
    • 1
  • Xinlei Hu
    • 1
  • Huafeng Sun
    • 1
    • 2
  1. 1.Department of Burns2nd Affiliated Hospital of Zhejiang University College of MedicineHangzhouChina
  2. 2.Department of Burns and Plastic Surgery117th Hospital of PLAHangzhouChina

Personalised recommendations