Molecular Biology Reports

, Volume 39, Issue 9, pp 8793–8802 | Cite as

Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co(NPs)–ferritin at modified glassy carbon electrode to design a novel nanobiosensor

  • Soheila Kashanian
  • Fereshteh Abasi Tarighat
  • Ronak Rafipour
  • Maryam Abbasi-Tarighat


Oxyhydroxy cobalt CoO(OH) nanoparticles (Co-NPs) were prepared in horse spleen apoferritin (HsAFr) cavity. Transmission electron microscopy revealed the particle size was 5.5–6 nm. Mineralization effect on HsAFr was investigated by fluorescence and far-UV circular dichroism (far-UV CD) spectroscopies. The far-UV CD experiments indicated an increase in the α-helical content after mineralization. Intrinsic fluorescence data showed that mineralization acts as a quencher of HsAFr. For the first time, direct electron transfer between Co(NPs)–HsAFr and a glassy carbon electrode in the thin film of dihexadecylphosphate (DHP) was investigated by cyclic voltammetry (CV) to design a biosensor. The anionic surfactant DHP was used to achieve direct electron-transfer between Co(NPs)–HsAFr molecules and the GC electrode surface. CV result showed clearly a pair of well-defined and quasi-reversible redox peaks arise from Co(NPs)–HsAFr embedded in DHP film. This novel biosensor can be used in medical and industrial fields to detect different analytes.


Nanoparticles Biosensor Direct electron transfer 


  1. 1.
    Pumera M, Sánchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Acuators B 123:1195–1205CrossRefGoogle Scholar
  2. 2.
    Omidfar K, Kia S, Kashania S, Paknejad M, Besharatie A, Kashanian S, Larijani B (2010) Colloidal nanogold-based immunochromatographic strip test for the detection of digoxin toxicity. Appl Biochem Biotechnol 160:843–855CrossRefPubMedGoogle Scholar
  3. 3.
    Omidfar K, Dehdast A, Zarei H, Khorsand Sourkohi B, Larijani B (2011) Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosens Bioelectron 26:4177–4183CrossRefPubMedGoogle Scholar
  4. 4.
    Omidfar k, Rasaee MJ, Zaraee AB, Amir MP, Rahbarizadeh F (2002) Stabilization of penicillinase–hapten conjugate for enzyme immunoassay. J Immunoassay Immunochem 23(2002):385–398CrossRefPubMedGoogle Scholar
  5. 5.
    Zheng N, Zhou X, Yang W, Li X, Yuan Z (2009) Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film. Talanta 79:780–786CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang Y, Zheng J (2008) Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film. Electrochem Commun 10:1400–1403CrossRefGoogle Scholar
  7. 7.
    Park CW, Park HJ, Kim JH, Won K, Yoon HH (2009) Immobilization and characterization of ferritin on gold electrode. Ultramicroscopy 109:1001–1005CrossRefPubMedGoogle Scholar
  8. 8.
    Wang G, Liu Y, Hu N (2007) Comparative electrochemical study of myoglobin loaded in different types of layer-by-layer assembly films. Electrochim Acta 53:2071–2079CrossRefGoogle Scholar
  9. 9.
    Li C (2006) Voltammetric determination of tyrosine based on an l-serine polymer film electrode. Colloid Surf B 50:147–151CrossRefGoogle Scholar
  10. 10.
    Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed 43:2113–2117CrossRefGoogle Scholar
  11. 11.
    Liu X, Zhang W, Huang Y, Li G (2004) Enhanced electron-transfer reactivity of horseradish peroxidase in phosphatidylcholine films and its catalysis to nitric oxide. J Biotechnol 108:145–152CrossRefPubMedGoogle Scholar
  12. 12.
    Shen L, Huang R, Hu N (2002) Myoglobin in polyacrylamide hydrogel films: direct electrochemistry and electrochemical catalysis. Talanta 56:1131–1139CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Zheng J (2008) Direct electrochemistry and electrocatalysis of cytochrome c based on chitosan-room temperature ionic liquid-carbon nanotubes composite. Electrochim Acta 54:749–754CrossRefGoogle Scholar
  14. 14.
    Liu Y, Liu H, Hu N (2005) Core-shell nanocluster films of hemoglobin and clay nanoparticle: direct electrochemistry and electrocatalysis. Biophys Chem 117:27–37CrossRefPubMedGoogle Scholar
  15. 15.
    Liu H, Wang L, Hu N (2002) Direct electrochemistry of hemoglobin in biomembrane-like DHP–PDDA polyion–surfactant composite films. Electrochim Acta 47:2515–2523CrossRefGoogle Scholar
  16. 16.
    Shan W, Liu H, Shi J, Yang L, Hu N (2008) Self-assembly of electroactive layer-by-layer films of heme proteins with anionic surfactant dihexadecyl phosphate. Biophys Chem 134:101–109CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang Z, Rusling JF (1997) Electron transfer between myoglobin and electrodes in thin films of phosphatidylcholines and dihexadecylphosphate. Biophys Chem 63:133–146CrossRefPubMedGoogle Scholar
  18. 18.
    Liu DG, Gugliotti LA, Wu T, Dolska M, Tkachenko AG, Shipton MK, Eaton BE, Feldheim DL (2006) RNA-mediated synthesis of palladium nanoparticles on Au surfaces. Langmuir 22(5862):5866Google Scholar
  19. 19.
    Sewell SL, Wright DW (2006) Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem Mater 18:3108–3113CrossRefGoogle Scholar
  20. 20.
    Liu G, Wu H, Dohnalkova A, Lin Y (2007) Apoferritin-templated synthesis of encoded metallic phosphate nanoparticle tags. Anal Chem 79:5614–5619CrossRefPubMedGoogle Scholar
  21. 21.
    Iwahori K, Enomoto T, Furusho H, Miura A, Nishio K, Mishima Y, Yamashita I (2007) Cadmium sulfide nanoparticle synthesis in Dps protein from Listeria innocua. Chem Mater 19:3105–3111CrossRefGoogle Scholar
  22. 22.
    Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T (2006) Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128:16626–16633CrossRefPubMedGoogle Scholar
  23. 23.
    Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg Chem 44:6393–6400CrossRefPubMedGoogle Scholar
  24. 24.
    Gálvez N, Sánchez P, Domínguez-Vera JM (2005) Preparation of Cu and CuFe prussian blue derivative nanoparticles using the apoferritin cavity as nanoreactor. Dalton Trans 2492–2494Google Scholar
  25. 25.
    Okuda M, Iwahori K, Yamashita I, Yoshimura H (2003) Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotech Bioeng 84:187–194CrossRefGoogle Scholar
  26. 26.
    Chen G, Zhu X, Meng F, Yu Z, Li G (2008) Apoferritin as a bionanomaterial to facilitate the electron transfer reactivity of hemoglobin and the catalytic activity towards hydrogen peroxide. Bioelectrochemistry 72:77–80CrossRefPubMedGoogle Scholar
  27. 27.
    Choi J-W, Kim YJ, Kim S-U, Min J, Oh B-K (2008) The fabrication of functional biosurface composed of iron storage protein, ferritin. Ultramicroscopy 108:1356–1359CrossRefPubMedGoogle Scholar
  28. 28.
    Tsukamoto R, Iwahori K, Muraoka M, Yamashita I (2005) Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin. Bull Chem Soc Jpn 78:2075–2081CrossRefGoogle Scholar
  29. 29.
    Meldrum FC, Douglas T, Levi S, Arosio P, Mann S (1995) Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. J Inorg Biochem 58:59–68CrossRefPubMedGoogle Scholar
  30. 30.
    Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Size-selective olefin hydrogenation by a Pd nanocluster provided in an apoferritin cage. Angew Chem Int Ed 43:2527–2530CrossRefGoogle Scholar
  31. 31.
    Warne B, Kasyuich OI, Mayes EL, Wiggins JAL, Wong KKW (2000) Self assembled nanoparticle Co:Pt for data storage applications. IEEE Trans Magn 36:3009–3011CrossRefGoogle Scholar
  32. 32.
    Wong KKW, Mann S (1996) Biomimetic synthesis of cadmium sulfide–ferritin nanocomposites. Adv Mater 8:928–932CrossRefGoogle Scholar
  33. 33.
    Cherry RC, Bjornsen AJ, Zapien DC (1998) Direct electron transfer of ferritin adsorbed at tin-doped indium oxide electrodes. Langmuir 14:1971–1973CrossRefGoogle Scholar
  34. 34.
    Pyon M-S, Cherry RJ, Bjornsen AJ, Zapien DC (1999) Uptake and release of iron by ferritin adsorbed at tin-doped indium oxide electrodes. Langmuir 15:7040–7046CrossRefGoogle Scholar
  35. 35.
    Zapien DC, Johnson MA (2000) Direct electron transfer of ferritin adsorbed at bare gold electrodes. J Electroanal Chem 494:114–120CrossRefGoogle Scholar
  36. 36.
    Shina KM, Leea JW, Wallace GG, Kima SJ (2008) Electrochemical properties of SWNT/ferritin composite for bioapplications. Sens Acuators B 133:393–397CrossRefGoogle Scholar
  37. 37.
    Tominaga M, Ohira A, Yamaguchi Y, Kunitake M (2004) Electrochemical, AFM and QCM studies on ferritin immobilized onto a self-assembled monolayer-modified gold electrode. J Electroanal Chem 566:323–329CrossRefGoogle Scholar
  38. 38.
    Kim J-W, Choi SH, Lillehei PT, Chu S-H, King GC, Watt GD (2007) Electrochemically controlled reconstitution of immobilized ferritins for bioelectronic applications. J Electroanal Chem 601:8–16CrossRefGoogle Scholar
  39. 39.
    Won K, Park MJ, Yoon HH, Kim JH (2008) Immobilization of iron storage protein on a gold electrode based on self-assembled monolayers. Ultramicroscopy 108:1342–1347CrossRefPubMedGoogle Scholar
  40. 40.
    Wu Y, Hu S (2004) Direct electron transfer of ferritin in dihexadecylphosphate on an Au film electrode and its catalytic oxidation toward ascorbic acid. Anal Chim Acta 527:37–43CrossRefGoogle Scholar
  41. 41.
    Yoshizawa K, Iwahori K, Sugimoto K, Yamashita I (2006) Fabrication of gold nanoparticles using the protein cage of apo ferritin. Chem Lett 35:1192–1193CrossRefGoogle Scholar
  42. 42.
    Allen M, Willits D, Young M, Douglas T (2003) Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua. Inorg Chem 42:6300–6305CrossRefPubMedGoogle Scholar
  43. 43.
    Douglas T, Stark VT (2000) Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg Chem 39:1828–1830CrossRefPubMedGoogle Scholar
  44. 44.
    Kim J-W, Choi SH, Lillehei PT, Chu S-H, King GC, Watt GW (2005) Cobal toxide hollow nanoparticles derived by bio-templating. Chem Commun 4101–4103Google Scholar
  45. 45.
    Stryer L (1965) The interaction of a naphthalene dye with apomyoglobin and apohemoglobin: a fluorescent probe of non-polar binding sites. J Mol Biol 13:482–495CrossRefPubMedGoogle Scholar
  46. 46.
    Daniel E, Weber G (1966) Cooperative effects in binding by bovine serum albumin. I. The binding of 1-anilino-8-naphthalenesulfonate fluorimetric titrations. Biochemistry 5:1893–1900CrossRefPubMedGoogle Scholar
  47. 47.
    Slavik J (1982) Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25CrossRefPubMedGoogle Scholar
  48. 48.
    Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Prot Peptide Sci 1:349–384CrossRefGoogle Scholar
  49. 49.
    Suna W, Wanga D, Li G, Zhai Z, Zhao R, Jiaoa K (2008) Direct electron transfer of hemoglobin in a CdS nanorods and nafion composite film on carbon ionic liquid electrode. Electrochim Acta 53:8217–8221CrossRefGoogle Scholar
  50. 50.
    Han X, Cheng W, Zhang Z, Dong S, Wang E (2002) Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles. Biochim Biophys Acta 1556:273–277CrossRefPubMedGoogle Scholar
  51. 51.
    Theil EC (1978) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Soheila Kashanian
    • 1
  • Fereshteh Abasi Tarighat
    • 2
  • Ronak Rafipour
    • 3
  • Maryam Abbasi-Tarighat
    • 4
  1. 1.Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC)Razi UniversityKermanshahIslamic Republic of Iran
  2. 2.Department of Biology, Faculty of Science Razi UniversityKermanshahIslamic Republic of Iran
  3. 3.Faculty of ChemistryRazi UniversityKermanshahIslamic Republic of Iran
  4. 4.Department of ChemistryFaculty of Sciences, Persian Gulf UniversityBushehrIslamic Republic of Iran

Personalised recommendations