Molecular Biology Reports

, Volume 39, Issue 9, pp 8645–8654 | Cite as

Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress

  • Jing Zhou
  • Mingying Liu
  • Jing Jiang
  • Guirong Qiao
  • Sheng Lin
  • Haiying Li
  • Lihua Xie
  • Renying ZhuoEmail author


Soil salinization can lead to environmental and ecological problems worldwide. Abiotic stressors, including salinity, are suspected to regulate microRNA (miRNA) expression. Plants exposed to such abiotic stressors express specific miRNAs, which are genes encoding small non-coding RNAs of 20–24 nucleotides. miRNAs are known to exist widely in plant genomes, and are endogenous. A previous study used miRNA microarray technology and poly(A) polymerase-mediated qRT-PCR technology to analyze the expression profile of miRNAs in two types of plants, Populus cathayana L. (salt-sensitive plants) and Salix matsudana Koidz (highly salinity-tolerant plants), both belonging to the Salicaceae family. miRNA microarray hybridization revealed changes in expression of 161 miRNAs P. cathayana and 32 miRNAs in S. matsudana under salt stress. Differences in expression indicate that the same miRNA has different expression patterns in salt-sensitive plants and salt-tolerant plants under salt stress. These indicate that changes in expression of miRNAs might function as a response to varying salt concentrations. To examine this, we used qRT-PCR to select five miRNA family target genes involved in plant responses to salt stress. Upon saline treatment, the expressions of both ptc-miR474c and ptc-miR398b in P. cathayana were down-regulated, but were up-regulated in S. matsudana. Expression of the miR396 family in both types of plants was suppressed. Furthermore, we have analyzed the different expression patterns between P. cathayana and S. matsudana. Findings of this study can be utilized in future investigations of post-transcriptional gene regulation in P. cathayana and S. matsudana under saline stress.


miRNA Salt stress Expression Populus cathayana L. Salix matsudana Koidz 



We would like to thank Dr. Han-Jiang Fu of the Academy of Military Medical Science and Dr. Zhangxun Wang of the Tongji University School of Medicine for their technical assistance. This work was supported by the National Natural Science Fundation of China (30972340) and Natural Science Fundation of Zhejiang Province (R3090070).

Supplementary material

11033_2012_1719_MOESM1_ESM.ppt (278 kb)
Supplementary material 1 (PPT 277 kb)
11033_2012_1719_MOESM2_ESM.doc (298 kb)
Supplementary material 2 (DOC 297 kb)
11033_2012_1719_MOESM3_ESM.doc (34 kb)
Supplementary material 3 (DOC 34 kb)
11033_2012_1719_MOESM4_ESM.doc (28 kb)
Supplementary material 4 (DOC 28 kb)
11033_2012_1719_MOESM5_ESM.doc (29 kb)
Supplementary material 5 (DOC 29 kb)


  1. 1.
    Ambros V (1989) Hierarchy of regulatory genes controls a larva to adult developmental switch in elegans. Cell 57(1):49–57CrossRefPubMedGoogle Scholar
  2. 2.
    Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24(5):701–713CrossRefPubMedGoogle Scholar
  3. 3.
    Baldwin JC, Dombrowski JE (2006) Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. Plant Sci 171(4):459–469CrossRefPubMedGoogle Scholar
  4. 4.
    Bartel DP (2004) MicroRNAs genomics biogenesis mechanism and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  5. 5.
    Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218(5):683–692CrossRefPubMedGoogle Scholar
  6. 6.
    Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123(7):1279–1291CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579(26):5923–5931CrossRefPubMedGoogle Scholar
  8. 8.
    Choi D, Kim JH, Kende H (2004) Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L). Plant Cell Physiol 45(7):897–904CrossRefPubMedGoogle Scholar
  9. 9.
    Chu CY, Rana TM (2006) Translation repression in human cells by microRNA induced gene silencing requires RCK/p54. PLoS Biol 4(7):210–219CrossRefGoogle Scholar
  10. 10.
    Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar cloning and expression in response to wounding and herbivory. Plant Physiol 124(1):285–295CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dai SX, Chen sl, Fritz E, Olbrich A et al (2006) Ion compartmentation in leaf cells of Populus euphratica and P.tomentosa under salt stress. J Beijing For Uni S2:1–5Google Scholar
  12. 12.
    Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Annals Bot 103(1):29–38CrossRefGoogle Scholar
  13. 13.
    Yang F, Xiao X, Zhang S, Korpelainen H, Li C (2009) Salt stress responses in Populus cathayana Rehder. Plant Sci 176(5):669–677CrossRefGoogle Scholar
  14. 14.
    Gomez GA, Verhey SD, Holappa LD, Shen Q, Ho THD, Walker-simmwas MK (1999) An ABA-induced protein kinase, PK2 ABA1, mediates ABA-suppressed gene expression in barley aleurone layers. Proc Natl Acad Sci USA 96(4):1767–1772CrossRefGoogle Scholar
  15. 15.
    Griffiths JS (2004) The microRNA registry. Nucleic Acids 32:109–111CrossRefGoogle Scholar
  16. 16.
    Griffiths JS, Moxon S, Marshall M et al (2005) Annotating non-coding RNAs in complete genomes. Nucleic Acids 33:121–124CrossRefGoogle Scholar
  17. 17.
    Hanley S, Barker JHA, Ooijen JWV et al (2002) A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor Appl Genet 105(6):1087–1096PubMedGoogle Scholar
  18. 18.
    He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factors downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916CrossRefPubMedGoogle Scholar
  19. 19.
    Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103(35):12987–12992CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229(4):1009–1023CrossRefPubMedGoogle Scholar
  21. 21.
    Jia XY, Wang WX, Ren LG et al (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 71(1–2):51–59CrossRefPubMedGoogle Scholar
  22. 22.
    Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNA and their target, including a stress-induced miRNA. Mol Cell 14(6):787–799CrossRefPubMedGoogle Scholar
  23. 23.
    Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plant. Annu Rev Plant Biol 57:19–53CrossRefPubMedGoogle Scholar
  24. 24.
    Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36(1):94–104CrossRefPubMedGoogle Scholar
  25. 25.
    Laura Z, Gábor R, András S, Gyöngyi S, Krisztina Ö, Zsuzsanna D et al (2008) Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiol 146(4):1721–1737CrossRefGoogle Scholar
  26. 26.
    Liang M, Davis E, Gardner D, Cai X, Wu Y (2006) Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta 224(5):1185–1196CrossRefPubMedGoogle Scholar
  27. 27.
    Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7):719–723CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2T−△△C method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  30. 30.
    Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus Trichocarpa that are absent from Arabidopsis. Plant Cell 17(8):2186–2203CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55(1):131–151CrossRefPubMedGoogle Scholar
  32. 32.
    Luo YC, Zhou H, Li Y, Chen GY et al (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580(21):5111–5116CrossRefPubMedGoogle Scholar
  33. 33.
    Lurin C, Andres C, Aubour S, Bellaouiet M et al (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16(8):2089–2103CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459(1–2):39–47CrossRefPubMedGoogle Scholar
  35. 35.
    Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57(5):1097–1107CrossRefPubMedGoogle Scholar
  36. 36.
    Mizoguchi T, Ichimura K, Irie K (1998) Identification of possible MAPK kinase cascade in Arabjdopsis theliana based on parewise yeast two hybrid analysis and functional complementation test of yeast mutants. FEBS Lett 437(1–2):56–60CrossRefPubMedGoogle Scholar
  37. 37.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 57(8):473–497CrossRefGoogle Scholar
  38. 38.
    Novorry MJ (1984) Purification and properties of D-manoitol-phosphate dehydrogenase and D-dlucitol-6-phosphate dehydrogenase from Escherichia coli. J Bacteriol 159(3):986–990Google Scholar
  39. 39.
    Pysh LD et al (1999) The GRAS gene family in A rabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18(1):111–119CrossRefPubMedGoogle Scholar
  40. 40.
    Rathinasabapathi B, Burnet M, Russell BL et al (1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plats: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA 94(7):3454–3458CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017–1023CrossRefPubMedGoogle Scholar
  42. 42.
    Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49(4):592–606CrossRefPubMedGoogle Scholar
  43. 43.
    Rhoades JD, Loveday J (1990) Salinity in irrigated agriculture. AGRIS Rec 30:1089–1142Google Scholar
  44. 44.
    Rhoades M, Reinhart B, Lim L, Burge B et al (2002) Prediction of plant microRNA targets. Cell 110(4):513–520CrossRefPubMedGoogle Scholar
  45. 45.
    Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17(3):354–358CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Salah E, Abdel G, Marinus P (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283(6):15932–15945Google Scholar
  47. 47.
    Schauers E, Jacobsen SE, Meinke DW, Ray A (2002) Dicer-like 1 blind men and elephants in Arabidopsis development. Trends Plant Sci 7(11):487–491CrossRefGoogle Scholar
  48. 48.
    Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V et al (2000) Quantitative reverse transcription–polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285(2):194–204CrossRefPubMedGoogle Scholar
  49. 49.
    Shen YG, Yan DQ, DU BX, Zhang JS et al (2002) Overexpression of proline transporter gene isolated from halophyte confers salt tolerance in Arabidopsis. J Integr Plant Biol 44(8):956–962Google Scholar
  50. 50.
    Small ID, Peeters N (2000) The PPR motif: a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25(2):46–47CrossRefPubMedGoogle Scholar
  51. 51.
    Stocking SJ, Gilmour MF, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94(3):1035–1040CrossRefGoogle Scholar
  52. 52.
    Seki M, Ishida J, Narusaka M, Fujita M et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31(3):279–292CrossRefPubMedGoogle Scholar
  53. 53.
    Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309CrossRefPubMedGoogle Scholar
  56. 56.
    Tang G, Reinhart BJ, Bartel DP et al (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17(1):49–63CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tang G (2005) siRNA and miRNA:an insight into RISCs. Trends Biochem Sci 30(2):106–144CrossRefPubMedGoogle Scholar
  58. 58.
    Tang G, Tang X, Mendu V, Jia X, Chen QJ, He L (2008) The art of microRNA: various strategies leading to gene silencing via an ancient pathway. Biochim Biophys Acta 1779(11):655–662CrossRefPubMedGoogle Scholar
  59. 59.
    Tran LS, Nakashima K, Sakuma Y, Simpson SD et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive Cis-element in the early responsive to dehydrationstress promoter. Plant Cell 16(9):2481–2498CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604CrossRefPubMedGoogle Scholar
  61. 61.
    Urao T, Katagiri T (1994) Two genes that encode Ca2 + dependent protein kinase are induced by drought and high salt stress in Arabidopsis theliana. Mol Genet 244:331–340CrossRefGoogle Scholar
  62. 62.
    Vernon DM, Bohnert HJ (1992) A novel metby transferase induced by osmotic stress in the facultative Mesembryanthemum crystallium. EMBO J 11(6):2077–2085PubMedPubMedCentralGoogle Scholar
  63. 63.
    Wei JZ, Tirajoh A, Effendy J, Plant AL (2000) Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci 159(1):135–148CrossRefPubMedGoogle Scholar
  64. 64.
    Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2):251–264CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yang ZX, Wang SZ, Xu G et al (1995) Study on the variation of wood property of juvenile P. cathayana among and within provenances. Scientia Silvae Sinicae 8(4):437–441Google Scholar
  66. 66.
    Yu SH, Liu J, Fu DR et al (2003) Characteristics of Tacamachaca genes in the Western Sichuan plateau. J Zejiang For Coll 20(1):29–33Google Scholar
  67. 67.
    Wu Y-Y, Qi-Jun C et al (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci 169(1):65–73CrossRefGoogle Scholar
  68. 68.
    Zeng HZ, Luo LJ (2003) A review on plant drought and salt tolerance gene. J Plant Genet Resour 4(3):270–273Google Scholar
  69. 69.
    Zhang BH, Pan XP, Anderson TA (2006) Indentification of 188 conserved maize microRNAs and the its targets. FEBS Lett 580(5):3752–3762CrossRefGoogle Scholar
  70. 70.
    Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289(1):3–16CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. Cell Physiol 210(2):279–289CrossRefGoogle Scholar
  72. 72.
    Zhao B, Ge LF, Liang RQ et al (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10(29):1–10Google Scholar
  73. 73.
    Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold- inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1779(11):780–788CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jing Zhou
    • 1
    • 2
  • Mingying Liu
    • 1
    • 2
  • Jing Jiang
    • 1
    • 2
  • Guirong Qiao
    • 1
    • 2
  • Sheng Lin
    • 1
    • 3
  • Haiying Li
    • 1
    • 2
  • Lihua Xie
    • 1
    • 2
  • Renying Zhuo
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingChina
  2. 2.Key Lab of Tree Genomics, The Research Institute of Subtropical of ForestryChinese Academy of ForestryFuyang, HangzhouChina
  3. 3.Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations