Molecular Biology Reports

, Volume 39, Issue 8, pp 8483–8490 | Cite as

Searching for consistently reported up- and down-regulated biomarkers in colorectal cancer: a systematic review of proteomic studies

  • Yanlei MaEmail author
  • Peng Zhang
  • Feng Wang
  • Huanlong Qin


The cumulative lifetime risk for the development of colorectal cancer in the general population is 6 %. In many cases, early detection by fecal occult blood test is limited regarding sensitivity. Therefore, there is an urgent need for improved diagnostic tests in colorectal cancer. The recent development of high-throughput molecular analytic techniques should allow the rapid evaluation of new diagnostic markers. However, researchers are faced with an overwhelming number of potential markers form numerous colorectal cancer protein expression profiling studies. To address the challenge, we have carried out a comprehensive systematic review of colorectal cancer biomarkers from 13 published studies that compared the protein expression profiles of colorectal cancer and normal tissues. A protein ranking system that considers the number of comparisons in agreement, total sample sizes, average fold-change and direction of differential expression was devised. We observed that some proteins were consistently reported by multiple studies as differentially expressed with a statistically significant frequency (P < 0.05) in cancer versus normal tissues comparison. Our systematic review method identified proteins that were consistently reported as differentially expressed. A review of the top four candidates revealed proteins described previously as having diagnostic value as well as novel candidate biomarkers. These candidates should help to develop a panel of biomarkers with sufficient sensitivity and specificity for the diagnosis of colorectal cancer in a clinical setting.


Proteomics Colorectal cancer Biomarker 



The authors thank Professor Simon Chan (Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre) for some technic directions on this study. This work was financially sponsored by Shanghai Rising-Star Program (No. 11QA1404800), the Grants from the National Natural Science Foundation of China (No. 81001069), and the National 863 High Technology Foundation (No. 2009AA02Z118).

Conflict of interest

The authors declare that no competing interests exist.

Supplementary material

11033_2012_1702_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)
11033_2012_1702_MOESM2_ESM.doc (44 kb)
Supplementary material 2 (DOC 44 kb)
11033_2012_1702_MOESM3_ESM.doc (48 kb)
Supplementary material 3 (DOC 48 kb)
11033_2012_1702_MOESM4_ESM.doc (39 kb)
Supplementary material 4 (DOC 39 kb)
11033_2012_1702_MOESM5_ESM.doc (28 kb)
Supplementary material 5 (DOC 28 kb)


  1. 1.
    Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW (2005) Colorectal cancer. Lancet 365:153–165PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics, 2005. CA Cancer J Clin 55:10–30PubMedCrossRefGoogle Scholar
  3. 3.
    Woolf SH (2000) The best screening test for colorectal cancer—a personal choice. N Engl J Med 343:1641–1643PubMedCrossRefGoogle Scholar
  4. 4.
    Walsh JM, Terdiman JP (2003) Colorectal cancer screening: scientific review. JAMA 289:1288–1296PubMedCrossRefGoogle Scholar
  5. 5.
    Conrotto P, Roesli C, Rybak J, Kischel P, Waltregny D, Neri D, Castronovo V (2008) Identification of new accessible tumor antigens in human colon cancer by ex vivo protein biotinylation and comparative mass spectrometry analysis. Int J Cancer 123:2856–2864PubMedCrossRefGoogle Scholar
  6. 6.
    Roblick UJ, Hirschberg D, Habermann JK, Palmberg C, Becker S, Kruger S, Gustafsson M, Bruch HP, Franzen B, Ried T, Bergmann T, Auer G et al (2004) Sequential proteome alterations during genesis and progression of colon cancer. Cell Mol Life Sci 61:1246–1255PubMedCrossRefGoogle Scholar
  7. 7.
    Xing X, Lai M, Gartner W, Xu E, Huang Q, Li H, Chen G (2006) Identification of differentially expressed proteins in colorectal cancer by proteomics: down-regulation of secretagogin. Proteomics 6:2916–2923PubMedCrossRefGoogle Scholar
  8. 8.
    Ma YL, Peng JY, Zhang P, Huang L, Liu WJ, Shen TY, Chen HQ, Zhou YK, Zhang M, Chu ZX, Qin HL (2009) Heterogeneous nuclear ribonucleoprotein A1 is identified as a potential biomarker for colorectal cancer based on differential proteomics technology. J Proteome Res 8:4525–4535PubMedCrossRefGoogle Scholar
  9. 9.
    Kim H, Kang HJ, You KT, Kim SH, Lee KY, Kim TI, Kim C, Song SY, Kim HJ, Lee C (2006) Suppression of human selenium-binding protein 1 is a late event in colorectal carcinogenesis and is associated with poor survival. Proteomics 6:3466–3476PubMedCrossRefGoogle Scholar
  10. 10.
    Alfonso P, Nunez A, Madoz-Gurpide J, Lombardia L, Sanchez L, Casal JI (2005) Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 5:2602–2611PubMedCrossRefGoogle Scholar
  11. 11.
    Polley AC, Mulholland F, Pin C, Williams EA, Bradburn DM, Mills SJ, Mathers JC, Johnson IT (2006) Proteomic analysis reveals field-wide changes in protein expression in the morphologically normal mucosa of patients with colorectal neoplasia. Cancer Res 66:6553–6562PubMedCrossRefGoogle Scholar
  12. 12.
    Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, Ong CN, Cheah PY, Eu KW, Hew CL (2006) Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics 5:1119–1130PubMedCrossRefGoogle Scholar
  13. 13.
    Mazzanti R, Solazzo M, Fantappie O, Elfering S, Pantaleo P, Bechi P, Cianchi F, Ettl A, Giulivi C (2006) Differential expression proteomics of human colon cancer. Am J Physiol Gastrointest Liver Physiol 290:G1329–G1338PubMedCrossRefGoogle Scholar
  14. 14.
    Tomonaga T, Matsushita K, Yamaguchi S, Oh-Ishi M, Kodera Y, Maeda T, Shimada H, Ochiai T, Nomura F (2004) Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin Cancer Res 10:2007–2014PubMedCrossRefGoogle Scholar
  15. 15.
    Nibbe RK, Markowitz S, Myeroff L, Ewing R, Chance MR (2009) Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol Cell Proteomics 8:827–845PubMedCrossRefGoogle Scholar
  16. 16.
    Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM (2004) Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4:793–811PubMedCrossRefGoogle Scholar
  17. 17.
    Celis JE, Gromov P (2003) Proteomics in translational cancer research: toward an integrated approach. Cancer Cell 3:9–15PubMedCrossRefGoogle Scholar
  18. 18.
    Alessandro R, Belluco C, Kohn EC (2005) Proteomic approaches in colon cancer: promising tools for new cancer markers and drug target discovery. Clin Colorectal Cancer 4:396–402PubMedCrossRefGoogle Scholar
  19. 19.
    Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW (2006) Population proteomics: the concept, attributes, and potential for cancer biomarker research. Mol Cell Proteomics 5:1811–1818PubMedCrossRefGoogle Scholar
  20. 20.
    Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197PubMedCrossRefGoogle Scholar
  21. 21.
    Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–215PubMedCrossRefGoogle Scholar
  22. 22.
    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 101:9309–9314PubMedCrossRefGoogle Scholar
  23. 23.
    Cahan P, Ahmad AM, Burke H, Fu S, Lai Y, Florea L, Dharker N, Kobrinski T, Kale P, McCaffrey TA (2005) List of lists-annotated (LOLA): a database for annotation and comparison of published microarray gene lists. Gene 360:78–82PubMedCrossRefGoogle Scholar
  24. 24.
    Shih W, Chetty R, Tsao MS (2005) Expression profiling by microarrays in colorectal cancer (review). Oncol Rep 13:517–524PubMedGoogle Scholar
  25. 25.
    Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24:5043–5051PubMedCrossRefGoogle Scholar
  26. 26.
    Chan SK, Griffith OL, Tai IT, Jones SJ (2008) Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiol Biomarkers Prev 17:543–552PubMedCrossRefGoogle Scholar
  27. 27.
    Sun W, Xing B, Sun Y, Du X, Lu M, Hao C, Lu Z, Mi W, Wu S, Wei H, Gao X, Zhu Y et al (2007) Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics 6:1798–1808PubMedCrossRefGoogle Scholar
  28. 28.
    Li Z, Zhao X, Bai S, Wang Z, Chen L, Wei Y, Huang C (2008) Proteomics identification of cyclophilin A as a potential prognostic factor and therapeutic target in endometrial carcinoma. Mol Cell Proteomics 7:1810–1823PubMedCrossRefGoogle Scholar
  29. 29.
    Ma Y, Peng J, Liu W, Zhang P, Huang L, Gao B, Shen T, Zhou Y, Chen H, Chu Z, Zhang M, Qin H (2009) Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol Cell Proteomics 8:1878–1890PubMedCrossRefGoogle Scholar
  30. 30.
    Ma Y, Peng J, Huang L, Liu W, Zhang P, Qin H (2009) Searching for serum tumor markers for colorectal cancer using a 2-D DIGE approach. Electrophoresis 30:2591–2599PubMedCrossRefGoogle Scholar
  31. 31.
    Huang HL, Stasyk T, Morandell S, Dieplinger H, Falkensammer G, Griesmacher A, Mogg M, Schreiber M, Feuerstein I, Huck CW, Stecher G, Bonn GK et al (2006) Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis 27:1641–1650PubMedCrossRefGoogle Scholar
  32. 32.
    Hartl FU, Hlodan R, Langer T (1994) Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci 19:20–25PubMedCrossRefGoogle Scholar
  33. 33.
    Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918PubMedCrossRefGoogle Scholar
  34. 34.
    Cappello F, Bellafiore M, Palma A, David S, Marciano V, Bartolotta T, Sciume C, Modica G, Farina F, Zummo G, Bucchieri F (2003) 60KDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 47:105–110PubMedGoogle Scholar
  35. 35.
    Cappello F, David S, Rappa F, Bucchieri F, Marasa L, Bartolotta TE, Farina F, Zummo G (2005) The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase. BMC Cancer 5:139PubMedCrossRefGoogle Scholar
  36. 36.
    Lombardi D, Lacombe ML, Paggi MG (2000) nm23: unraveling its biological function in cell differentiation. J Cell Physiol 182:144–149PubMedCrossRefGoogle Scholar
  37. 37.
    Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J (2003) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:659–672PubMedCrossRefGoogle Scholar
  38. 38.
    Aryee DN, Simonitsch I, Mosberger I, Kos K, Mann G, Schlogl E, Potschger U, Gadner H, Radaszkiewicz T, Kovar H (1996) Variability of nm23-H1/NDPK-A expression in human lymphomas and its relation to tumour aggressiveness. Br J Cancer 74:1693–1698PubMedCrossRefGoogle Scholar
  39. 39.
    Niitsu N, Okamoto M, Honma Y, Nakamine H, Tamaru JI, Nakamura S, Yoshino T, Higashihara M, Hirano M, Okabe-Kado J (2003) Serum levels of the nm23-H1 protein and their clinical implication in extranodal NK/T-cell lymphoma. Leukemia 17:987–990PubMedCrossRefGoogle Scholar
  40. 40.
    Lindmark G (1996) NM-23 H1 immunohistochemistry is not useful as predictor of metastatic potential of colorectal cancer. Br J Cancer 74:1413–1418PubMedCrossRefGoogle Scholar
  41. 41.
    Heys SD, Langlois N, Smith IC, Walker LG, Eremin O (1998) NM23 gene product expression does not predict lymph node metastases or survival in young patients with colorectal cancer. Oncol Rep 5:735–739PubMedGoogle Scholar
  42. 42.
    Dursun A, Akyurek N, Gunel N, Yamac D (2002) Prognostic implication of nm23-H1 expression in colorectal carcinomas. Pathology 34:427–432PubMedCrossRefGoogle Scholar
  43. 43.
    Forte A, D’Urso A, Gallinaro LS, Lo Storto G, Soda G, Bosco D, Bezzi M, Vietri F, Beltrami V (2002) NM23 expression as prognostic factor in colorectal carcinoma. G Chir 23:61–63PubMedGoogle Scholar
  44. 44.
    Brenner AS, Thebo JS, Senagore AJ, Duepree HJ, Gramlich T, Ormsby A, Lavery IC, Fazio VW (2003) Analysis of both NM23-h1 and NM23-H2 expression identifies “at-risk” patients with colorectal cancer. Am Surg 69:203–208; discussion 8PubMedGoogle Scholar
  45. 45.
    Yamaguchi A, Urano T, Fushida S, Furukawa K, Nishimura G, Yonemura Y, Miyazaki I, Nakagawara G, Shiku H (1993) Inverse association of nm23-H1 expression by colorectal cancer with liver metastasis. Br J Cancer 68:1020–1024PubMedCrossRefGoogle Scholar
  46. 46.
    Martinez JA, Prevot S, Nordlinger B, Nguyen TM, Lacarriere Y, Munier A, Lascu I, Vaillant JC, Capeau J, Lacombe ML (1995) Overexpression of nm23-H1 and nm23-H2 genes in colorectal carcinomas and loss of nm23-H1 expression in advanced tumour stages. Gut 37:712–720PubMedCrossRefGoogle Scholar
  47. 47.
    Tannapfel A, Kockerling F, Katalinic A, Wittekind C (1995) Expression of nm23-H1 predicts lymph node involvement in colorectal carcinoma. Dis Colon Rectum 38:651–654PubMedCrossRefGoogle Scholar
  48. 48.
    Kapitanovic S, Cacev T, Berkovic M, Popovic-Hadzija M, Radosevic S, Seiwerth S, Spaventi S, Pavelic K, Spaventi R (2004) nm23-H1 expression and loss of heterozygosity in colon adenocarcinoma. J Clin Pathol 57:1312–1318PubMedCrossRefGoogle Scholar
  49. 49.
    Royds JA, Cross SS, Silcocks PB, Scholefield JH, Rees RC, Stephenson TJ (1994) Nm23 ‘anti-metastatic’ gene product expression in colorectal carcinoma. J Pathol 172:261–266PubMedCrossRefGoogle Scholar
  50. 50.
    Indinnimeo M, Cicchini C, Stazi A, Giarnieri E, Limiti MR, Ghini C, Vecchione A (1999) Correlation between nm23-H1 overexpression and clinicopathological variables in human anal canal carcinoma. Oncol Rep 6:1353–1356PubMedGoogle Scholar
  51. 51.
    Cohn KH, Wang FS, Desoto-LaPaix F, Solomon WB, Patterson LG, Arnold MR, Weimar J, Feldman JG, Levy AT, Leone A et al (1991) Association of nm23-H1 allelic deletions with distant metastases in colorectal carcinoma. Lancet 338:722–724PubMedCrossRefGoogle Scholar
  52. 52.
    Leone A, McBride OW, Weston A, Wang MG, Anglard P, Cropp CS, Goepel JR, Lidereau R, Callahan R, Linehan WM et al (1991) Somatic allelic deletion of nm23 in human cancer. Cancer Res 51:2490–2493PubMedGoogle Scholar
  53. 53.
    Cohn KH, Ornstein DL, Wang F, LaPaix FD, Phipps K, Edelsberg C, Zuna R, Mott LA, Dunn JL (1997) The significance of allelic deletions and aneuploidy in colorectal carcinoma. Results of a 5-year follow-up study. Cancer 79:233–244PubMedCrossRefGoogle Scholar
  54. 54.
    Myeroff LL, Markowitz SD (1993) Increased nm23-H1 and nm23-H2 messenger RNA expression and absence of mutations in colon carcinomas of low and high metastatic potential. J Natl Cancer Inst 85:147–152PubMedCrossRefGoogle Scholar
  55. 55.
    Cawkwell L, Lewis FA, Quirke P (1994) Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. Br J Cancer 70:813–818PubMedCrossRefGoogle Scholar
  56. 56.
    Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr et al (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276:1957–1963PubMedCrossRefGoogle Scholar
  57. 57.
    Fleming J, Ghose A, Harrison PR (2001) Molecular mechanisms of cancer prevention by selenium compounds. Nutr Cancer 40:42–49PubMedCrossRefGoogle Scholar
  58. 58.
    Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241PubMedCrossRefGoogle Scholar
  59. 59.
    Reid ME, Duffield-Lillico AJ, Garland L, Turnbull BW, Clark LC, Marshall JR (2002) Selenium supplementation and lung cancer incidence: an update of the nutritional prevention of cancer trial. Cancer Epidemiol Biomarkers Prev 11:1285–1291PubMedGoogle Scholar
  60. 60.
    Zhuo H, Smith AH, Steinmaus C (2004) Selenium and lung cancer: a quantitative analysis of heterogeneity in the current epidemiological literature. Cancer Epidemiol Biomarkers Prev 13:771–778PubMedGoogle Scholar
  61. 61.
    Bekku S, Mochizuki H, Yamamoto T, Ueno H, Takayama E, Tadakuma T (2000) Expression of carbonic anhydrase I or II and correlation to clinical aspects of colorectal cancer. Hepatogastroenterology 47:998–1001PubMedGoogle Scholar
  62. 62.
    Kivela AJ, Saarnio J, Karttunen TJ, Kivela J, Parkkila AK, Pastorekova S, Pastorek J, Waheed A, Sly WS, Parkkila TS, Rajaniemi H (2001) Differential expression of cytoplasmic carbonic anhydrases, CA I and II, and membrane-associated isozymes, CA IX and XII, in normal mucosa of large intestine and in colorectal tumors. Dig Dis Sci 46:2179–2186PubMedCrossRefGoogle Scholar
  63. 63.
    Mori M, Staniunas RJ, Barnard GF, Jessup JM, Steele GD Jr, Chen LB (1993) The significance of carbonic anhydrase expression in human colorectal cancer. Gastroenterology 105:820–826PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yanlei Ma
    • 1
  • Peng Zhang
    • 1
  • Feng Wang
    • 1
  • Huanlong Qin
    • 1
  1. 1.Department of SurgeryShanghai Tenth People’s Hospital Affiliated to Tongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations