Molecular Biology Reports

, Volume 39, Issue 6, pp 6505–6511 | Cite as

Analysis of the genetic diversity of physic nut, Jatropha curcas L. accessions using RAPD markers

  • M. Y. Rafii
  • M. Shabanimofrad
  • M. W. Puteri Edaroyati
  • M. A. Latif


A sum of 48 accessions of physic nut, Jatropha curcas L. were analyzed to determine the genetic diversity and association between geographical origin using RAPD-PCR markers. Eight primers generated a total of 92 fragments with an average of 11.5 amplicons per primer. Polymorphism percentages of J. curcas accessions for Selangor, Kelantan, and Terengganu states were 80.4, 50.0, and 58.7%, respectively, with an average of 63.04%. Jaccard’s genetic similarity co-efficient indicated the high level of genetic variation among the accessions which ranged between 0.06 and 0.81. According to UPGMA dendrogram, 48 J. curcas accessions were grouped into four major clusters at coefficient level 0.3 and accessions from same and near states or regions were found to be grouped together according to their geographical origin. Coefficient of genetic differentiation (Gst) value of J. curcas revealed that it is an outcrossing species.


Genetic diversity Jatropha curcas L. RAPD-PCR Geographic origin 



The authors are grateful to the authority of Universiti Putra Malaysia for supporting this research project.

Supplementary material

11033_2012_1478_MOESM1_ESM.doc (399 kb)
Supplementary material 1 (DOC 399 kb)


  1. 1.
    Heller J (1996) Physic nut, Jatropha curcas L. Bioversity internationalGoogle Scholar
  2. 2.
    King A, He W, Cuevas J, Freudenberger M, Ramiaramanana D, Graham I (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905PubMedCrossRefGoogle Scholar
  3. 3.
    Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenerg 19:1–15CrossRefGoogle Scholar
  4. 4.
    Sunil N, Sivaraj N, Anitha K, Abraham B, Kumar V, Sudhir E, Vanaja M, Varaprasad K (2009) Analysis of diversity and distribution of Jatropha curcas L. germplasm using geographic information system (DIVA-GIS). Genet Resour Crop Evol 56:115–119CrossRefGoogle Scholar
  5. 5.
    Tatikonda L, Wani S, Kannan S, Beerelli N, Sreedevi T, Hoisington D, Devi P, Varshney R (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L.: a biofuel plant. Plant Sci 176:505–513CrossRefGoogle Scholar
  6. 6.
    Basha S, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386CrossRefGoogle Scholar
  7. 7.
    Sunil N, Varaprasad K, Sivaraj N, Suresh Kumar T, Abraham B, Prasad R (2008) Assessing Jatropha curcas L. germplasm in situ–a case study. Biomass Bioenerg 32:198–202CrossRefGoogle Scholar
  8. 8.
    Shuit S, Lee K, Kamaruddin A, Yusup S (2010) Reactive extraction and in situ esterification of Jatropha curcas L. seeds for the production of biodiesel. Fuel 89:527–530CrossRefGoogle Scholar
  9. 9.
    Kaushik N, Kumar K, Kumar S, Roy S (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenerg 31:497–502CrossRefGoogle Scholar
  10. 10.
    Ginwal H, Phartyal S, Rawat P, Srivastava R (2005) Seed source variation in morphology, germination and seedling growth of Jatropha curcas Linn. in central India. Silvae Genetica 54:76–79Google Scholar
  11. 11.
    Rao G, Korwar G, Shanker A, Ramakrishna Y (2008) Genetic associations, variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas (L.) accessions. Trees Struct Funct 22:697–709CrossRefGoogle Scholar
  12. 12.
    Sun Q, Li L, Li Y, Wu G, Ge X (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865CrossRefGoogle Scholar
  13. 13.
    Ginwal H, Rawat P, Srivastava R (2004) Seed source variation in growth performance and oil yield of Jatropha curcas Linn. in central India. Silvae Genetica 53:186–191Google Scholar
  14. 14.
    Solouki M, Mehdikhani H, Zeinali H, Emamjomeh A (2008) Study of genetic diversity in Chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci Hortic 117:281–287CrossRefGoogle Scholar
  15. 15.
    Sergio L, Gianni B (2005) Molecular markers based analysis for crop germplasm preservation. Paper presented at the FAO Meeting on the role of biotechnology for the characterisation and conservation of crops, forestry, animal and fishery genetic resources, Turin, Italy, 5–7 March 2005Google Scholar
  16. 16.
    Graner A, Ludwig WF, Melchinger AE (1994) Relationships among European barley germplasm II. Comparison of RFLP and pedigree data. Crop sci 34:1199–1205CrossRefGoogle Scholar
  17. 17.
    Latif MA, Rafii Yusop M, Motiur Rahman M, Bashar Talukdar M (2011) Microsatellite and minisatellite markers based DNA fingerprinting and genetic diversity of blast and ufra resistant genotypes. C R Biol 5(4):361–368Google Scholar
  18. 18.
    Abdullah N, Rafii Yusop M, Ithnin M, Saleh G, Latif MA (2011) Genetic variability of oil palm parental genotypes and performance of it’s’ progenies as revealed by molecular markers and quantitative traits. C R Biol 334(4):290–299PubMedCrossRefGoogle Scholar
  19. 19.
    Ashkani S, Rafii MY, Rusli I, Meon S, Siti Nor Akmar A, Abdul Rahim H, Latif MA (2012) SSRs for marker assisted selection for blast resistance in rice (Oryza sativa L.). Plant Mol Biol Rep 30(1):79–86. doi: 10.1007/s11105-011-0315-4 CrossRefGoogle Scholar
  20. 20.
    Sudheer Pamidimarri D, Singh S, Mastan S, Patel J, Reddy M (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364PubMedCrossRefGoogle Scholar
  21. 21.
    Franco J, Crossa J, Ribaut J, Bertran J, Warburton M, Khairallah M (2001) A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theor Appl Genet 103:944–952CrossRefGoogle Scholar
  22. 22.
    Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8CrossRefGoogle Scholar
  23. 23.
    Rohlf F (2002) NTSYS-pc: numerical taxonomy system, version 2.1 Exeter Publishing. Ltd., Setauket, New York, USAGoogle Scholar
  24. 24.
    Nei M (1987) Molecular evolutionary genetics. Columbia University Press 4:406–425Google Scholar
  25. 25.
    Moyano C, Alfonso C, Gallego J, Raposo R, Melgarejo P (2003) Comparison of RAPD and AFLP marker analysis as a means to study the genetic structure of Botrytis cinerea populations. Eur J Plant Pathol 109:515–522CrossRefGoogle Scholar
  26. 26.
    Yeh F, Boyle T (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157Google Scholar
  27. 27.
    Ganesh Ram S, Parthiban K, Senthil Kumar R, Thiruvengadam V, Paramathma M (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 55:803–809CrossRefGoogle Scholar
  28. 28.
    Kumar R, Tripathi Y, Shukla P, Ahlawat S, Gupta V (2009) Genetic diversity and relationships among germplasm of Jatropha curcas L. revealed by RAPDs. Trees Struct Funct 23:1075–1079CrossRefGoogle Scholar
  29. 29.
    Sudheer Pamidiamarri D, Pandya N, Reddy M, Radhakrishnan T (2009) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP. Mol Biol Rep 36:901–907PubMedCrossRefGoogle Scholar
  30. 30.
    Achten W, Nielsen L, Aerts R, Lengkeek A, Kjær E, Trabucco A, Hansen J, Maes W, Graudal L, Akinnifesi F (2010) Towards domestication of Jatropha curcas. Biofuels 1:91–107CrossRefGoogle Scholar
  31. 31.
    Shabanimofrad M, Yusop MR, Saad MS, Megat Wahab PE, Biabani AR, Latif MA (2011) Diversity of physic nut (Jatropha curcas) in Malaysia: application of DIVA—geographic information system and cluster analysis. Aust J Crop Sci 5(4):361–368Google Scholar
  32. 32.
    Boora K, Dhillon R (2009) Evaluation of genetic diversity in Jatropha curcas L. using RAPD markers. Indian J Biotechnol 9(1):50–57Google Scholar
  33. 33.
    Song Z, Guan Y, Rong J, Xu X, Lu B (2006) Inter-simple sequence repeat (ISSR) variation in populations of the cutgrass Leersia hexandra. Aquat Bot 84:359–362CrossRefGoogle Scholar
  34. 34.
    Nybom H, Bartish I (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114CrossRefGoogle Scholar
  35. 35.
    Phan H, Ford R, Taylor P (2003) Population structure of Ascochyta rabiei in Australia based on STMS fingerprints. Fungal Divers 13:111–129Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Y. Rafii
    • 1
    • 3
  • M. Shabanimofrad
    • 1
  • M. W. Puteri Edaroyati
    • 1
  • M. A. Latif
    • 1
    • 2
  1. 1.Department of Crop Science, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Bangladesh Rice Research Institute (BRRI)GazipurBangladesh
  3. 3.Institute of Tropical Agriculture (ITA), Universiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations