Molecular Biology Reports

, Volume 39, Issue 5, pp 6219–6225 | Cite as

Circulating microRNAs involved in multiple sclerosis

  • Sue Rutherford Siegel
  • Jason Mackenzie
  • George Chaplin
  • Nina G. Jablonski
  • Lyn Griffiths
Article

Abstract

Multiple sclerosis (MS) is an immune-mediated, demyelinating and neurodegenerative disease of the central nervous system. After traumatic brain injury, it is the leading cause of neurology disability in young adults. Considerable advances have been made in identifying genes involved in MS but the genetic and phenotypic complexity associated with this disease significantly hinders any progress. A novel class of small RNA molecules, microRNAs (miRNAs) has acquired much attention because they regulate the expression of up to 30% of protein-coding genes and may play a pivotal role in the development of many, if not all, complex diseases. Seven published studies investigated miRNAs from peripheral blood mononuclear cells, CD4+, CD8+ T cell, B lymphocytes, peripheral blood leukocytes, whole blood and brain astrocytes with MS risk. The absence of MS studies investigating plasma miRNA prompted the current investigation of identifying a circulating miRNA signature in MS. We conducted a microarray analysis of over 900 known miRNA transcripts from plasma samples collected from four MS individuals and four sex-aged and ethnicity matched healthy controls. We identified six plasma miRNA (miR-614, miR-572, miR-648, miR-1826, miR-422a and miR-22) that were significantly up-regulated and one plasma miRNA (miR-1979) that was significantly down-regulated in MS individuals. Both miR-422a and miR-22 have previously been implicated in MS. The present study is the first to show a circulating miRNA signature involved in MS that could serve as a potential prognostic and diagnostic biomarker for MS.

Keywords

miRNA MS Expression analysis Microarray Plasma Case-control population 

References

  1. 1.
    Page WF, Kurtzke JF, Murphy FM, Norman JE Jr (1993) Epidemiology of multiple sclerosis in US veterans: V. Ancestry and the risk of multiple sclerosis. Ann Neurol 33:632–639PubMedCrossRefGoogle Scholar
  2. 2.
    Poser CM (1994) The epidemiology of multiple sclerosis: a general overview. Ann Neurol 36:S180–S193PubMedCrossRefGoogle Scholar
  3. 3.
    Rothwell PM, Charlton D (1998) High incidence and prevalence of multiple sclerosis in south east Scotland: evidence of a genetic predisposition. J Neurol Neurosurg Psychiatry 64:730–735PubMedCrossRefGoogle Scholar
  4. 4.
    Weinshenker BG (1994) Natural history of multiple sclerosis. Ann Neurol 36:S6–S11PubMedCrossRefGoogle Scholar
  5. 5.
    Al-Omaishi J, Bashir R, Gendelman HE (1999) The cellular immunology of multiple sclerosis. J Leukoc Biol 65:444–452PubMedGoogle Scholar
  6. 6.
    Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517PubMedCrossRefGoogle Scholar
  7. 7.
    Ramagopalan SV, Handel A, Giovannoni G, Rutherford Siegel S, Ebers GC, Chaplin G (2011) Period prevalence of multiple sclerosis in England: relationship to UV exposure. Neurology 76:1410–1414PubMedCrossRefGoogle Scholar
  8. 8.
    Ramagopalan SV, Ebers GC (2008) Genes for multiple sclerosis. Lancet 371:283–285PubMedCrossRefGoogle Scholar
  9. 9.
    De Smaele E, Ferretti E, Gulino A (2010) MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res 1338:100–111PubMedCrossRefGoogle Scholar
  10. 10.
    Tufekci KU, Oner MG, Genc S, Genc K (2010) MicroRNAs and multiple sclerosis. Autoimmune Dis 2011:807426PubMedGoogle Scholar
  11. 11.
    Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2011) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848CrossRefGoogle Scholar
  12. 12.
    Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495PubMedCrossRefGoogle Scholar
  13. 13.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefGoogle Scholar
  14. 14.
    Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, Emanueli C (2011) Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123:282–291PubMedCrossRefGoogle Scholar
  15. 15.
    Bostjancic E, Zidar N, Stajer D, Glavac D (2010) MicroRNAs miR-1 miR-133a miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169PubMedCrossRefGoogle Scholar
  16. 16.
    D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–2773PubMedCrossRefGoogle Scholar
  17. 17.
    Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR, Li PF (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–78PubMedCrossRefGoogle Scholar
  18. 18.
    Dinger ME, Mercer TR, Mattick JS (2008) RNAs as extracellular signaling molecules. J Mol Endocrinol 40:115–151CrossRefGoogle Scholar
  19. 19.
    Hill AF (2009) Exosomes in neurological disease. Curr Med Lit Neurol 25:27–32Google Scholar
  20. 20.
    Bartel DP (2004) MicroRNAs: genomics biogenesis mechanism and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  21. 21.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008PubMedCrossRefGoogle Scholar
  22. 22.
    Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55:1944–1949PubMedCrossRefGoogle Scholar
  23. 23.
    Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391:73–77PubMedCrossRefGoogle Scholar
  24. 24.
    Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684PubMedCrossRefGoogle Scholar
  25. 25.
    Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817PubMedCrossRefGoogle Scholar
  26. 26.
    Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506PubMedCrossRefGoogle Scholar
  27. 27.
    Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666PubMedCrossRefGoogle Scholar
  28. 28.
    Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039PubMedCrossRefGoogle Scholar
  29. 29.
    De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M, Zagatti B, Battistini L, Borsellino G, Fainardi E, Gavioli R, Negrini M, Furlan R, Granieri E (2010) Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 226:165–171PubMedCrossRefGoogle Scholar
  30. 30.
    Otaegui D, Baranzini SE, Armañanzas R, Calvo B, Muñoz-Culla M, Khankhanian P, Inza I, Lozano JA, Castillo-Triviño T, Asensio A, Olaskoaga J, López de Munain A (2009) Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 4:e6309PubMedCrossRefGoogle Scholar
  31. 31.
    Lindberg RL, Hoffman F, Mehling M, Kuhle J, Kappos L (2010) Altered expression of miR-17-5p in CD4(+) lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol 40:888–898PubMedCrossRefGoogle Scholar
  32. 32.
    Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259PubMedCrossRefGoogle Scholar
  33. 33.
    Cox MB, Cairns MJ, Gandhi KS, Carroll AP, Moscovis S, Stewart GJ, Broadley S, Scott RJ, Booth DR, Lechner-Scott J, ANZgene Multiple Sclerosis Genetics Consortium (2010) MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 5:e12132PubMedCrossRefGoogle Scholar
  34. 34.
    Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, Lenhof HP, Ruprechtm K, Meese E (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 4:e7440PubMedCrossRefGoogle Scholar
  35. 35.
    Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, Hohlfeld R, Meinl E (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352PubMedCrossRefGoogle Scholar
  36. 36.
    Jung R, Lübcke C, Wagener C, Neumaier M (1997) Reversal of RT-PCR inhibition observed in heparinized clinical specimens. Biotechniques 23:24, 26, 28Google Scholar
  37. 37.
    Nagino K, Nomura O, Takii Y, Myomoto A, Ichikawa M, Nakamur F, Higasa M (2006) Ultrasensitive DNA chip: gene expression profile analysis without RNA amplification. J Biochem 139:697–703PubMedCrossRefGoogle Scholar
  38. 38.
    Kaushansky N, Eisenstein M, Zilkha-Falb R, Ben-Nun A (2010) The myelin-associated oligodendrocytic basic protein (MOBP) as a relevant primary target autoantigen in multiple sclerosis. Autoimmun Rev 9:233–236PubMedCrossRefGoogle Scholar
  39. 39.
    Doi Y, Oki S, Ozawa T, Hohjoh H, Miyake S, Yamamura T (2008) Orphan nuclear receptor NR4A2 expressed in T cells from multiple sclerosis mediates production of inflammatory cytokines. Proc Natl Acad Sci USA 105:8381–8386PubMedCrossRefGoogle Scholar
  40. 40.
    Saini HK, Enright AJ, Griffiths-Jones S (2008) Annotation of mammalian primary microRNAs. BMC Genomics 9:564PubMedCrossRefGoogle Scholar
  41. 41.
    Banerjee D (2011) Recent Advances in the pathobiology of Hodgkin’s lymphoma: potential impact on diagnostic predictive and therapeutic strategies. Adv Hematol 2011:439456PubMedGoogle Scholar
  42. 42.
    Van Vlierberghe P, De Weer A, Mestdagh P, Feys T, De Preter K, De Paepe P, Lambein K, Vandesompele J, Van Roy N, Verhasselt B, Poppe B, Speleman F (2009) Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs. BMJ 147:686–690Google Scholar
  43. 43.
    Zhang K, Zhang L, Rao F, Brar B, Rodriguez-Flores JL, Taupenot L, O’Connor DT (2010) Human tyrosine hydroxylase natural genetic variation delineation of functional transcriptional control motifs disrupted in the proximal promoter. Circ Cardiovasc Genet 3:187–198PubMedCrossRefGoogle Scholar
  44. 44.
    Lin L, Peng SL (2006) Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1. J Immunol 176:4793–4803PubMedGoogle Scholar
  45. 45.
    Nahta R, Yuan LX, Fiterman DJ, Zhang L, Symmans WF, Ueno NT, Esteva FJ (2006) B cell translocation gene 1 contributes to antisense Bcl-2-mediated apoptosis in breast cancer cells. Mol Cancer Ther 5:1593–1601PubMedCrossRefGoogle Scholar
  46. 46.
    Lee H, Cha S, Lee MS, Cho GJ, Choi WS, Suk K (2003) Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activation-induced cell death of brain microglia. J Immunol 171:5802PubMedGoogle Scholar
  47. 47.
    Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29:3783–3790PubMedCrossRefGoogle Scholar
  48. 48.
    Verhagen APM, Pruijn GJM (2011) Are the Ro RNP-associated Y RNAs concealing microRNAs? Y RNA-derived miRNAs may be involved in autoimmunity. Bioessays 33:674–682PubMedCrossRefGoogle Scholar
  49. 49.
    Chen X, Quinn AM, Wolin SL (2000) Ro ribonucleopreotiens contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev 14:777–782PubMedGoogle Scholar
  50. 50.
    Chen X, Wolin SL (2004) The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J Mol Med 82:232–239PubMedCrossRefGoogle Scholar
  51. 51.
    Xue D, Shi H, Smith JD, Chen X, Noe DA, Cedervall T, Yang DD, Eynon E, Brash DE, Kashgarian M, Flavell RA, Wolin SL (2003) A lupus-like syndrome develops in mice lacking the Ro 60 kDa protein a major lupus autoantigen. Proc Natl Acad Sci USA 100:7503–7508PubMedCrossRefGoogle Scholar
  52. 52.
    Massaro AR, De Pascalis D, Carnevale A, Carbone G (2009) The neural cell adhesion molecule (NCAM) present in the cerebrospinal fluid of multiple sclerosis patients is unsialylated. Eur Rev Med Pharmacol Sci 13:397–399PubMedGoogle Scholar
  53. 53.
    Byun E, Caillier SJ, Montalban X, Villoslada P, Fernandez O, Brassat D, Comabella M, Wang J, Barcellos LF, Baranzini SE, Oksenberg JR (2008) Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol 65:337–344PubMedCrossRefGoogle Scholar
  54. 54.
    Song KH, Li T, Owsley E, Chiang JY (2010) A putative role of micro RNA in regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes. J Lipid Res 51:2223–2233PubMedCrossRefGoogle Scholar
  55. 55.
    Kim JW, Mori S, Nevins JR (2011) Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res 70:4820–4828CrossRefGoogle Scholar
  56. 56.
    Russell DW, Setchell KD (1992) Bile acid biosynthesis. Biochemistry 31:4737–4749PubMedCrossRefGoogle Scholar
  57. 57.
    Simons M, Kramer EM, Macchi P, Rathke-Hartlieb S, Trotter J, Nave KA, Schulz JB (2002) Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease. J Cell Biol 157:327–336PubMedCrossRefGoogle Scholar
  58. 58.
    Rouault JP, Rimokh R, Tessa C, Paranhos G, Ffrench M, Duret L, Garoccio M, Germain D, Samarut J, Magaud JP (1992) BTG1 a member of a new family of antiproliferative genes. EMBO J 11:1663–1670PubMedGoogle Scholar
  59. 59.
    Mandel M, Gurevich M, Pauzner R, Kaminski N, Achiron A (2004) Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin Exp Immunol 138:164–170PubMedCrossRefGoogle Scholar
  60. 60.
    Lélu K, Laffont S, Delpy L, Paulet PE, Périnat T, Tschanz SA, Pelletier L, Engelhardt B, Guéry JC (2011) Estrogen receptor alpha signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J Immunol 187:2386–2393PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sue Rutherford Siegel
    • 1
  • Jason Mackenzie
    • 3
  • George Chaplin
    • 2
  • Nina G. Jablonski
    • 2
  • Lyn Griffiths
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyPennsylvania State University College of MedicineHersheyUSA
  2. 2.Department of AnthropologyThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Genomics Research CentreGriffith Health Institute, Griffith University Gold Coast CampusGold CoastAustralia

Personalised recommendations