Molecular Biology Reports

, Volume 39, Issue 5, pp 5553–5560 | Cite as

Folate and choline metabolism gene variants in relation to ovarian cancer risk in the Polish population

  • Piotr Pawlik
  • Adrianna Mostowska
  • Margarita Lianeri
  • Stefan Sajdak
  • Helena Kędzia
  • Paweł P. Jagodzinski


Data indicates that genetic factors alone do not account for ovarian tumorigenesis, suggesting that epigenetic status additionally affects this process. Therefore, we assessed the possible contribution of polymorphic variants of genes that may affect DNA methylation to the risk of ovarian cancer incidence in the Polish population. Using PCR-RFLP and HRM analyses, we studied the distribution of BHMT (rs3733890), MTHFD1 (rs2236225), MTHFR (rs1801133), MTR (rs1805087), MTRR (rs1801394) and TCN2 (rs1801198) genotypes and alleles in patients with ovarian cancer (n = 136) and controls (n = 160). Moreover, using DNA and methylation-specific PCR (MSP) we also determined the methylation of the Cadherin 13(CDH13) promoter in cancerous tissue from these patients. We did not observe a significant association between all studied gene variants and the incidence of ovarian cancer. The lowest Ptrend = 0.1226 was observed for the MTHFR Ala222Val polymorphism. Moreover, the lowest P = 0.0772 was found in the comparison of MTHFR Ala/Ala versus Val/Val and Val/Ala genotypes in patients and control groups. The multifactor dimensionality reduction analysis also did not indicate a significant interactive genetic effect on ovarian cancer incidence for all analyzed SNPs. However, we observed frequent methylation of the CDH13 promoter in approximately 21% (29/136) patients with ovarian carcinomas. Our results might suggest that the selected polymorphic gene variants may not contribute to ovarian cancer incidence.


Ovarian cancer Polymorphism Choline Folate metabolism 



Supported by grant No. 502-01-01124182-07474, Poznan University of Medical Sciences. The technical assistance of Ms. Joanna Grzelczak and Longina Nowak is gratefully acknowledged.

Supplementary material

11033_2011_1359_MOESM1_ESM.tif (33.2 mb)
Figure 1S. Contribution of six folate and choline metabolism enzymes to DNA methylation. Enzyme abbreviations: BHMT, betaine-homocysteine methyltransferase; DNMTs, MTHFD1, methylenetetrahydrofolate dehydrogenase 1; MTHFR, 5,10-methylenetetrahydrofolate reductase; MTR, 5-methyltetrahydrofolate-homocysteine methyltransferase; MTRR, methionine synthase reductase; TCN2, transcobalamin II. Substrate abbreviations: AdoHcy, S-adenosylhomocysteine; AdoMet, S-adenosylmethionine; 5,10-CH2-THF, 5,10-methylenetetrahydrofolate; 5-CH3-THF, 5-metylotetrahydrofolate; DMG, dimethylglycine; HCY, homocysteine; MET, methionine; THF, tetrahydrofolate. (TIFF 33985 kb)
11033_2011_1359_MOESM2_ESM.doc (40 kb)
Supplementary material 2 (DOC 40 kb)


  1. 1.
    Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18:581–592PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedCrossRefGoogle Scholar
  3. 3.
    Sueblinvong T, Carney ME (2009) Current understanding of risk factors for ovarian cancer. Curr Treat Options Oncol 10:67–81PubMedCrossRefGoogle Scholar
  4. 4.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692PubMedCrossRefGoogle Scholar
  5. 5.
    Balch C, Huang TH, Brown R, Nephew KP (2004) The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 191:1552–1572PubMedCrossRefGoogle Scholar
  6. 6.
    Barton CA, Hacker NF, Clark SJ, O’Brien PM (2008) DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecol Oncol 109:129–139PubMedCrossRefGoogle Scholar
  7. 7.
    Balch C, Fang F, Matei DE, Huang TH, Nephew KP (2009) Epigenetic changes in ovarian. Cancer Endocrinol 150:4003–4011Google Scholar
  8. 8.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159PubMedCrossRefGoogle Scholar
  9. 9.
    Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974PubMedCrossRefGoogle Scholar
  10. 10.
    Turek-Plewa J, Jagodziński PP (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 10:631–647PubMedGoogle Scholar
  11. 11.
    Cantoni GL (1953) S-adenosylmethionine; a new intermediate fordem enzymatically from l-methionine and adenosinetriphosphate. J Biol Chem 204:403–416Google Scholar
  12. 12.
    Li YN, Gulati S, Baker PJ, Brody LC, Banerjee R, Kruger WD (1996) Cloning, mapping and RNA analysis of the human methionine synthase gene. Hum Mol Genet 5:851–858CrossRefGoogle Scholar
  13. 13.
    Garrow TA (1996) Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J Biol Chem 271:22831–22838PubMedGoogle Scholar
  14. 14.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, Rozen R (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genet 10:111–113PubMedCrossRefGoogle Scholar
  15. 15.
    Hum DW, Bell AW, Rozen R, MacKenzie RE (1988) Primary structure of a human trifunctional enzyme: isolation of a cDNA encoding methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase. J Biol Chem 263:15946–15950PubMedGoogle Scholar
  16. 16.
    Hakami N, Neiman PE, Canellos GP, Lazerson J (1971) Neonatal megaloblastic anemia due to inherited transcobalamin II deficiency in two siblings. New Eng J Med 285:1163–1170PubMedCrossRefGoogle Scholar
  17. 17.
    Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS, Gravel RA (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci USA 95:3059–3064PubMedCrossRefGoogle Scholar
  18. 18.
    Paz MF, Avila S, Fraga MF, Pollan M, Capella G, Peinado MA, Sanchez-Cespedes M, Herman JG, Esteller M (2002) Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 62:4519–4524PubMedGoogle Scholar
  19. 19.
    Hazra A, Fuchs CS, Kawasaki T, Kirkner GJ, Hunter DJ, Ogino S (2010) Germline polymorphisms in the one-carbon metabolism pathway and DNA methylation in colorectal cancer. Cancer Causes Control 21:331–345PubMedCrossRefGoogle Scholar
  20. 20.
    Kang S, Kim JW, Kang GH, Park NH, Song YS, Kang SB, Lee HP (2005) Polymorphism in folate- and methionine-metabolizing enzyme and aberrant CpG island hypermethylation in uterine cervical cancer. Gynecol Oncol 96:173–180PubMedCrossRefGoogle Scholar
  21. 21.
    Liu H, Jin G, Wang H, Wu W, Liu Y, Qian J, Fan W, Ma H, Miao R, Hu Z, Sun W, Wang Y, Jin L, Wei Q, Shen H, Huang W, Lu D (2008) Association of polymorphisms in one-carbon metabolizing genes and lung cancer risk: a case-control study in Chinese population. Lung Cancer 61:21–29PubMedCrossRefGoogle Scholar
  22. 22.
    Hazra A, Wu K, Kraft P, Fuchs CS, Giovannucci EL, Hunter DJ (2007) Twenty-four non-synonymous polymorphisms in the one-carbon metabolic pathway and risk of colorectal adenoma in the Nurses’ Health Study. Carcinogenesis 28:1510–1519PubMedCrossRefGoogle Scholar
  23. 23.
    Xu X, Gammon MD, Wetmur JG, Bradshaw PT, Teitelbaum SL, Neugut AI, Santella RM, Chen J (2008) B-vitamin intake, one-carbon metabolism, and survival in a population-based study of women with breast cancer. Cancer Epidemiol Biomark Prev 17:2109–2116CrossRefGoogle Scholar
  24. 24.
    Suzuki T, Matsuo K, Hasegawa Y, Hiraki A, Wakai K, Hirose K, Saito T, Sato S, Ueda R, Tajima K (2007) One-carbon metabolism-related gene polymorphisms and risk of head and neck squamous cell carcinoma: case-control study. Cancer Sci 98:1439–1446PubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki T, Matsuo K, Hiraki A, Saito T, Sato S, Yatabe Y, Mitsudomi T, Hida T, Ueda R, Tajima K (2007) Impact of one-carbon metabolism-related gene polymorphisms on risk of lung cancer in Japan: a case control study. Carcinogenesis 28:1718–1725PubMedCrossRefGoogle Scholar
  26. 26.
    Wu Q, Lothe RA, Ahlquist T, Silins I, Tropé CG, Micci F, Nesland JM, Suo Z, Lind GE (2007) DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. Mol Cancer 6:45PubMedCrossRefGoogle Scholar
  27. 27.
    Bol GM, Suijkerbuijk KP, Bart J, Vooijs M, van der Wall E, van Diest PJ (2010) Methylation profiles of hereditary and sporadic ovarian cancer. Histopathology 57:363–370PubMedCrossRefGoogle Scholar
  28. 28.
    Cho KR, Shih IM (2009) Ovarian cancer. Annu Rev Pathol 4:287–313PubMedCrossRefGoogle Scholar
  29. 29.
    Bast RC Jr, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9:415–428PubMedCrossRefGoogle Scholar
  30. 30.
    Fasching PA, Gayther S, Pearce L, Schildkraut JM, Goode E, Thiel F, Chenevix-Trench G, Chang-Claude J, Wang-Gohrke S, Ramus S, Pharoah P, Berchuck A; OCAC (Ovarian Cancer Association Consortium) (2009) Role of genetic polymorphisms and ovarian cancer susceptibility Mol Oncol 3:171–181Google Scholar
  31. 31.
    Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33PubMedCrossRefGoogle Scholar
  32. 32.
    Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36PubMedCrossRefGoogle Scholar
  33. 33.
    Kwon MJ, Shin YK (2011) Epigenetic regulation of cancer-associated genes in ovarian cancer. Int J Mol Sci 12:983–1008PubMedCrossRefGoogle Scholar
  34. 34.
    Kotsopoulos J, Hankinson SE, Tworoger SS (2010) Dietary betaine and choline intake are not associated with risk of epithelial ovarian cancer. Eur J Clin Nutr 64:111–114PubMedCrossRefGoogle Scholar
  35. 35.
    Mostowska A, Myka M, Lianeri M, Roszak A, Jagodziński PP (2011) Folate and choline metabolism gene variants and development of uterine cervical carcinoma. Clin Biochem 44:596–600PubMedCrossRefGoogle Scholar
  36. 36.
    Xu X, Gammon MD, Zeisel SH, Bradshaw PT, Wetmur JG, Teitelbaum SL, Neugut AI, Santella RM, Chen J (2009) High intakes of choline and betaine reduce breast cancer mortality in a population-based study. FASEB J 23:4022–4028PubMedCrossRefGoogle Scholar
  37. 37.
    Kelemen LE, Sellers TA, Schildkraut JM, Cunningham JM, Vierkant RA, Pankratz VS, Fredericksen ZS, Gadre MK, Rider DN, Liebow M, Goode EL (2008) Genetic variation in the one-carbon transfer pathway and ovarian cancer risk. Cancer Res 68:2498–2506PubMedCrossRefGoogle Scholar
  38. 38.
    Kotsopoulos J, Hecht JL, Marotti JD, Kelemen LE, Tworoger SS (2010) Relationship between dietary and supplemental intake of folate, methionine, vitamin B6 and folate receptor alpha expression in ovarian tumors. Int J Cancer 126:2191–2198PubMedGoogle Scholar
  39. 39.
    Silva LM, Silva JN, Galbiatti AL, Succi M, Ruiz MT, Raposo LS, Maniglia JV, Pavarino-Bertelli EC, Goloni-Bertollo EM (2011) Head and neck carconogenesis: impact of MTHFD1 G1958A polymorphism. Rev Assoc Med Bras 57:194–199PubMedCrossRefGoogle Scholar
  40. 40.
    Krajinovic M, Lemieux-Blanchard E, Chiasson S, Primeau M, Costea I, Moghrabi A (2004) Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 4:66–72PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang Z, Shi Q, Liu Z, Sturgis EM, Spitz MR, Wei Q (2005) Polymorphisms of methionine synthase and methionine synthase reductase and risk of squamous cell carcinoma of the head and neck: a case-control analysis. Cancer Epidemiol Biomark Prev 14:1188–1193CrossRefGoogle Scholar
  42. 42.
    Ma E, Iwasaki M, Junko I, Hamada GS, Nishimoto IN, Carvalho SM, Motola J Jr, Laginha FM, Tsugane S (2009) Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Brazilian women. BMC Cancer 9:122PubMedCrossRefGoogle Scholar
  43. 43.
    Matsuo K, Ito H, Wakai K, Hirose K, Saito T, Suzuki T, Kato T, Hirai T, Kanemitsu Y, Hamajima H, Tajima K (2005) One-carbon metabolism related gene polymorphisms interact with alcohol drinking to influence the risk of colorectal cancer in Japan. Carcinogenesis 26:2164–2171PubMedCrossRefGoogle Scholar
  44. 44.
    de Lima EL, da Silva VC, da Silva HD, Bezerra AM, de Morais VL, de Morais AL, Cruz RV, Barros MH, Hassan R, de Freitas AC, Muniz MT (2010) MTR polymorphic variant A2756G and retinoblastoma risk in Brazilian children. Pediatr Blood Cancer 54:904–908PubMedGoogle Scholar
  45. 45.
    Lima CS, Ortega MM, Ozelo MC, Araujo RC, De Souza CA, Lorand-Metze I, Annichino-Bizzacchi JM, Costa FF (2008) Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk. Leuk Res 32:401–405PubMedCrossRefGoogle Scholar
  46. 46.
    Skibola CF, Forrest MS, Coppedé F, Agana L, Hubbard A, Smith MT, Bracci PM, Holly EA (2004) Polymorphisms and haplotypes in folate-metabolizing genes and risk of non-Hodgkin lymphoma. Blood 104:2155–2162PubMedCrossRefGoogle Scholar
  47. 47.
    Stolzenberg-Solomon RZ, Qiao YL, Abnet CC, Ratnasinghe DL, Dawsey SM, Dong ZW, Taylor PR, Mark SD (2003) Esophageal and gastric cardia cancer risk and folate-and vitamin B(12)-related polymorphisms in Linxian, China. Cancer Epidemiol Biomark Prev 12:1222–1226Google Scholar
  48. 48.
    Bethke L, Webb E, Murray A, Schoemaker M, Feychting M, Lönn S, Ahlbom A, Malmer B, Henriksson R, Auvinen A, Kiuru A, Salminen T, Johansen C, Christensen HC, Muir K, McKinney P, Hepworth S, Dimitropoulou P, Lophatananon A, Swerdlow A, Houlston R (2008) Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiol Biomark Prev 17:1195–1202CrossRefGoogle Scholar
  49. 49.
    Matsuo K, Hamajima N, Hirai T, Kato T, Inoue M, Takezaki T, Tajima K (2002) Methionine synthase reductase gene A66G polymorphism is associated with risk of colorectal cancer. Asian Pac J Cancer Prev 3:353–359PubMedGoogle Scholar
  50. 50.
    Suzuki T, Matsuo K, Sawaki A, Mizuno N, Hiraki A, Kawase T, Watanabe M, Nakamura T, Yamao K, Tajima K, Tanaka H (2008) Alcohol drinking and one-carbon metabolism-related gene polymorphisms on pancreatic cancer risk. Cancer Epidemiol Biomarkers Prev 17:2742–2747PubMedCrossRefGoogle Scholar
  51. 51.
    Suzuki T, Matsuo K, Hirose K, Hiraki A, Kawase T, Watanabe M, Yamashita T, Iwata H, Tajima K (2008) One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis 29:356–362PubMedCrossRefGoogle Scholar
  52. 52.
    Gershoni-Baruch R, Dagan E, Israeli D, Kasinetz L, Kadouri E, Friedman E (2000) Association of the C677T polymorphism in the MTHFR gene with breast and/or ovarian cancer risk in Jewish women. Eur J Cancer 36:2313–2316PubMedCrossRefGoogle Scholar
  53. 53.
    Jakubowska A, Gronwald J, Menkiszak J, Górski B, Huzarski T, Byrski T, Edler L, Lubiński J, Scott RJ, Hamann U (2007) Methylenetetrahydrofolate reductase polymorphisms modify BRCA1-associated breast and ovarian cancer risks. Breast Cancer Res Treat 104:299–308PubMedCrossRefGoogle Scholar
  54. 54.
    Terry KL, Tworoger SS, Goode EL, Gates MA, Titus-Ernstoff L, Kelemen LE, Sellers TA, Hankinson SE, Cramer DW (2010) MTHFR polymorphisms in relation to ovarian cancer risk. Gynecol Oncol 119:319–324PubMedCrossRefGoogle Scholar
  55. 55.
    Neumann AS, Lyons HJ, Shen H, Liu Z, Shi Q, Sturgis EM, Shete S, Spitz MR, El-Naggar A, Hong WK, Wei Q (2005) Methylenetetrahydrofolate reductase polymorphisms and risk of squamous cell carcinoma of the head and neck: a case-control analysis. Int J Cancer 115:131–136PubMedCrossRefGoogle Scholar
  56. 56.
    Liu YX, Wang B, Wan MH, Tang WF, Huang FK, Li C (2011) Meta-analysis of the relationship between the metholenetetrahydrofolate reductase C677T genetic polymorphism, folate intake and esophageal cancer. Asian Pac J Cancer Prev 12:247–252PubMedGoogle Scholar
  57. 57.
    Arslan S, Karadayi S, Yildirim ME, Ozdemir O, Akkurt I (2011) The association between methylene-tetrahydrofolate reductase gene polymorphism and lung cancer risk. Mol Biol Rep 38:991–996PubMedCrossRefGoogle Scholar
  58. 58.
    Maruti SS, Ulrich CM, Jupe ER, White E (2009) MTHFR C677T and postmenopausal breast cancer risk by intakes of one-carbon metabolism nutrients: a nested case-control study. Breast Cancer Res 11:R91PubMedCrossRefGoogle Scholar
  59. 59.
    Lacasaña-Navarro M, Galván-Portillo M, Chen J, López-Cervantes M, López-Carrillo L (2006) Methylenetetrahydrofolate reductase 677C>T polymorphism and gastric cancer susceptibility in Mexico. Eur J Cancer 42:528–533PubMedCrossRefGoogle Scholar
  60. 60.
    Iacopetta B, Heyworth J, Girschik J, Grieu F, Clayforth C, Fritschi L (2009) The MTHFR C677T and DeltaDNMT3B C-149T polymorphisms confer different risks for right- and left-sided colorectal cancer. Int J Cancer 125:84–90PubMedCrossRefGoogle Scholar
  61. 61.
    Sood S, Das R, Trehan A, Ahluwalia J, Sachdeva MU, Varma N, Bansal D, Marwaha RK (2010) Methylenetetrahydrofolate reductase gene polymorphisms: association with risk for pediatric acute lymphoblastic leukemia in north Indians. Leuk Lymphoma 51:928–932PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Piotr Pawlik
    • 1
  • Adrianna Mostowska
    • 2
  • Margarita Lianeri
    • 2
  • Stefan Sajdak
    • 1
  • Helena Kędzia
    • 3
  • Paweł P. Jagodzinski
    • 2
  1. 1.Clinic of Gynecological SurgeryPoznań University of Medical SciencesPoznanPoland
  2. 2.Department of Biochemistry and Molecular BiologyPoznań University of Medical SciencesPoznanPoland
  3. 3.Department of PathologyPoznań University of Medical SciencesPoznanPoland

Personalised recommendations