Molecular Biology Reports

, Volume 39, Issue 4, pp 4989–4996

Inositol phosphate kinase Vip1p interacts with histone chaperone Asf1p in Saccharomyces cerevisiae

  • Shigehiro Osada
  • Kiyoto Kageyama
  • Yuji Ohnishi
  • Jun-ichi Nishikawa
  • Tsutomu Nishihara
  • Masayoshi Imagawa
Article
  • 244 Downloads

Abstract

Histone eviction and deposition are critical steps in many nuclear processes. The histone H3/H4 chaperone Asf1p is highly conserved and is involved in DNA replication, DNA repair, and transcription. To identify the factors concerned with anti-silencing function 1 (ASF1), we purified Asf1p-associated factors from the yeast Saccharomyces cerevisiae by a GST pull-down experiment, and mass spectrometry analysis was performed. Several factors are specifically associated with Asf1p, including Vip1p. VIP1 is conserved from yeast to humans and encodes inositol hexakisphoshate and inositol heptakisphosphate kinase. Vip1p interacted with Asf1p as a dimer or in a complex with another protein(s). Deletion of VIP1 did not affect the interaction between Asf1p and other Asf1p-associated factors. An in vitro GST pull-down assay indicated a direct interaction between Asf1p and Vip1p, and the interaction between the two factors in vivo was detected by an immunoprecipitation experiment. Furthermore, genetic experiments revealed that VIP1 disruption increased sensitivity to 6-azauracil (6-AU), but not to DNA-damaging reagents in wild-type and ASF1-deleted strains. It is thought that 6-AU decreases nucleotide levels and reduces transcription elongation. These observations suggest that the association of Asf1p and Vip1p may be implicated in transcription elongation.

Keywords

Histone chaperone Histone Transcription elongation Inositol phosphate kinase 

References

  1. 1.
    Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from saccharomyces cerevisiae. Yeast 13(11):1029–1042. doi:10.1002/(SICI)1097-0061(19970915)13:11<1029:AID-YEA160>3.0.CO;2-1 PubMedCrossRefGoogle Scholar
  2. 2.
    Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402(6761):555–560. doi:10.1038/990147 PubMedCrossRefGoogle Scholar
  3. 3.
    Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M (2000) A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5(3):221–233PubMedCrossRefGoogle Scholar
  4. 4.
    Emili A, Schieltz DM, Yates JR 3rd, Hartwell LH (2001) Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol Cell 7(1):13–20PubMedCrossRefGoogle Scholar
  5. 5.
    Adkins MW, Howar SR, Tyler JK (2004) Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14(5):657–666. doi:10.1016/j.molcel.2004.05.016 PubMedCrossRefGoogle Scholar
  6. 6.
    Kim HJ, Seol JH, Han JW, Youn HD, Cho EJ (2007) Histone chaperones regulate histone exchange during transcription. EMBO J 26(21):4467–4474. doi:10.1038/sj.emboj.7601870 PubMedCrossRefGoogle Scholar
  7. 7.
    Osada S, Sutton A, Muster N, Brown CE, Yates JR 3rd, Sternglanz R, Workman JL (2001) The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev 15(23):3155–3168. doi:10.1101/gad.907201 PubMedCrossRefGoogle Scholar
  8. 8.
    Sutton A, Shia WJ, Band D, Kaufman PD, Osada S, Workman JL, Sternglanz R (2003) Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 278(19):16887–16892. doi:10.1074/jbc.M210709200 PubMedCrossRefGoogle Scholar
  9. 9.
    Osada S, Kurita M, Nishikawa J, Nishihara T (2005) Chromatin assembly factor Asf1p-dependent occupancy of the SAS histone acetyltransferase complex at the silent mating-type locus HMLalpha. Nucleic Acids Res 33(8):2742–2750. doi:10.1093/nar/gki560 PubMedCrossRefGoogle Scholar
  10. 10.
    Recht J, Tsubota T, Tanny JC, Diaz RL, Berger JM, Zhang X, Garcia BA, Shabanowitz J, Burlingame AL, Hunt DF, Kaufman PD, Allis CD (2006) Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc Natl Acad Sci USA 103(18):6988–6993. doi:10.1073/pnas.0601676103 PubMedCrossRefGoogle Scholar
  11. 11.
    Moshkin YM, Armstrong JA, Maeda RK, Tamkun JW, Verrijzer P, Kennison JA, Karch F (2002) Histone chaperone ASF1 cooperates with the brahma chromatin-remodelling machinery. Genes Dev 16(20):2621–2626. doi:10.1101/gad.231202 PubMedCrossRefGoogle Scholar
  12. 12.
    Chimura T, Kuzuhara T, Horikoshi M (2002) Identification and characterization of CIA/ASF1 as an interactor of bromodomains associated with TFIID. Proc Natl Acad Sci USA 99(14):9334–9339. doi:10.1073/pnas.142627899 PubMedCrossRefGoogle Scholar
  13. 13.
    Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14(10):953–961PubMedCrossRefGoogle Scholar
  14. 14.
    Eberharter A, John S, Grant PA, Utley RT, Workman JL (1998) Identification and analysis of yeast nucleosomal histone acetyltransferase complexes. Methods 15(4):315–321. doi:10.1006/meth.1998.0635 PubMedCrossRefGoogle Scholar
  15. 15.
    Shia WJ, Osada S, Florens L, Swanson SK, Washburn MP, Workman JL (2005) Characterization of the yeast trimeric-SAS acetyltransferase complex. J Biol Chem 280(12):11987–11994. doi:10.1074/jbc.M500276200 PubMedCrossRefGoogle Scholar
  16. 16.
    Feoktistova A, McCollum D, Ohi R, Gould KL (1999) Identification and characterization of schizosaccharomyces pombe asp1(+), a gene that interacts with mutations in the Arp2/3 complex and actin. Genetics 152(3):895–908PubMedGoogle Scholar
  17. 17.
    Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316(5821):106–109. doi:10.1126/science.1139099 PubMedCrossRefGoogle Scholar
  18. 18.
    Lee YS, Mulugu S, York JD, O’Shea EK (2007) Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 316(5821):109–112. doi:10.1126/science.1139080 PubMedCrossRefGoogle Scholar
  19. 19.
    Fridy PC, Otto JC, Dollins DE, York JD (2007) Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases. J Biol Chem 282(42):30754–30762. doi:10.1074/jbc.M704656200 PubMedCrossRefGoogle Scholar
  20. 20.
    McNeil JB, McIntosh EM, Taylor BV, Zhang FR, Tang S, Bognar AL (1994) Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J Biol Chem 269(12):9155–9165PubMedGoogle Scholar
  21. 21.
    Jala VR, Prakash V, Rao NA, Savithri HS (2002) Overexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus. J Biosci 27(3):233–242PubMedCrossRefGoogle Scholar
  22. 22.
    Daganzo SM, Erzberger JP, Lam WM, Skordalakes E, Zhang R, Franco AA, Brill SJ, Adams PD, Berger JM, Kaufman PD (2003) Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 13(24):2148–2158PubMedCrossRefGoogle Scholar
  23. 23.
    Exinger F, Lacroute F (1992) 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr Genet 22(1):9–11PubMedCrossRefGoogle Scholar
  24. 24.
    Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, Buratowski S, Greenblatt JF (2002) RNA polymerase II elongation factors of saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22(20):6979–6992PubMedCrossRefGoogle Scholar
  25. 25.
    Schwabish MA, Struhl K (2006) Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 22(3):415–422. doi:10.1016/j.molcel.2006.03.014 PubMedCrossRefGoogle Scholar
  26. 26.
    Lin LJ, Minard LV, Johnston GC, Singer RA, Schultz MC (2010) Asf1 can promote trimethylation of H3 K36 by Set2. Mol Cell Biol 30(5):1116–1129. doi:10.1128/MCB.01229-09 PubMedCrossRefGoogle Scholar
  27. 27.
    Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, Buratowski S, Handa H (1998) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12(3):343–356PubMedCrossRefGoogle Scholar
  28. 28.
    Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D (1999) The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400(6741):284–288. doi:10.1038/22350 PubMedCrossRefGoogle Scholar
  29. 29.
    Peterlin BM, Price DH (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23(3):297–305. doi:10.1016/j.molcel.2006.06.014 PubMedCrossRefGoogle Scholar
  30. 30.
    Lindstrom DL, Squazzo SL, Muster N, Burckin TA, Wachter KC, Emigh CA, McCleery JA, Yates JR 3rd, Hartzog GA (2003) Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol Cell Biol 23(4):1368–1378PubMedCrossRefGoogle Scholar
  31. 31.
    Bennett M, Onnebo SM, Azevedo C, Saiardi A (2006) Inositol pyrophosphates: metabolism and signaling. Cell Mol Life Sci 63(5):552–564. doi:10.1007/s00018-005-5446-z PubMedCrossRefGoogle Scholar
  32. 32.
    Onnebo SM, Saiardi A (2007) Inositol pyrophosphates get the vip1 treatment. Cell 129(4):647–649. doi:10.1016/j.cell.2007.05.002 PubMedCrossRefGoogle Scholar
  33. 33.
    Bhandari R, Chakraborty A, Snyder SH (2007) Inositol pyrophosphate pyrotechnics. Cell Metab 5(5):321–323. doi:10.1016/j.cmet.2007.04.008 PubMedCrossRefGoogle Scholar
  34. 34.
    York JD (2006) Regulation of nuclear processes by inositol polyphosphates. Biochim Biophys Acta 1761(5–6):552–559. doi:10.1016/j.bbalip.2006.04.014 PubMedGoogle Scholar
  35. 35.
    Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299(5603):112–114. doi:10.1126/science.1078068 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Shigehiro Osada
    • 1
  • Kiyoto Kageyama
    • 2
  • Yuji Ohnishi
    • 1
  • Jun-ichi Nishikawa
    • 2
    • 3
  • Tsutomu Nishihara
    • 2
    • 4
  • Masayoshi Imagawa
    • 1
  1. 1.Department of Molecular Biology, Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
  2. 2.Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
  3. 3.School of Pharmacy and Pharmaceutical SciencesMukogawa-Women’s UniversityNishinomiyaJapan
  4. 4.School of PharmacyHyogo University of Health SciencesKobeJapan

Personalised recommendations