Advertisement

Molecular Biology Reports

, Volume 39, Issue 4, pp 4909–4914 | Cite as

NutriTRAILomics in prostate cancer: time to have two strings to one’s bow

  • Ammad Ahmad FarooqiEmail author
  • Aamir Rana
  • Asma M. Riaz
  • Ammara Khan
  • Muhammad Ali
  • Sara Javed
  • Shahzeray Mukhtar
  • Sehrish Minhaj
  • Javeria Rafique Rao
  • Javairia Rajpoot
  • Rafia Amber
  • Fiza Asif Javed
  • Waqar-un-Nisa
  • Reema Khanum
  • Shahzad Bhatti
Article

Abstract

The astonishing development of broad genomics and proteomics tools have catalyzed a new era in both therapeutic interventions and nutrition in prostate cancer. The terms pharmacogenomics and nutrigenomics have been derived out of their genetic forbears as large-scale genomics technologies have been established in the last decade. It is unquestionable that rationale of both disciplines is to individualize or personalize medicine and food and nutrition, and eventually health, by tailoring the drug or the food to the individual genotype. The purpose of this review is to significantly inspect results from current research concerning the mechanisms of action of phytonutrients and potential effects on prostate cancer. Substantial emerging data supports the synergistic adiministration of nutraceuticals with TRAIL in prostate cancer progression to circumvent TRAIL refractoriness. Nonetheless, developing novel scientific methods for discovery, validation, characterization and standardization of these multicomponent phyto-therapeutics is vital to their recognition into mainstream medicine. The key to interpret a personalized response is a greater comprehension of nutrigenomics, proteomics and metabolomics.

Keywords

Prostate cancer TRAIL Resveratrol EGCG 

References

  1. 1.
    Farooqi AA, Waseem S, Ashraf MS, Iqbal MJ, Bhatti S (2011) TRAIL and guardian angel of genome integrity: ATM boards TRAIL blazer. J Cancer Res Clin Oncol 137:1283–1287PubMedCrossRefGoogle Scholar
  2. 2.
    Farooqi AA, Mansoor Q, Rana A, Mashhadi TM, Imran M, Naqi SA, Zia-ur-Rehman, Bhatti S (2011) SMURF and NEDD4 interference offers therapeutic potential in chaperoning genome integrity. J Exp Integr Med 1:43–50CrossRefGoogle Scholar
  3. 3.
    Horndasch M, Culig Z (2011) SOCS-3 antagonizes pro-apoptotic effects of TRAIL and resveratrol in prostate cancer cells. Prostate 71(12):1357–1366. doi: 10.1002/pros.21353 PubMedGoogle Scholar
  4. 4.
    Sallman DA, Chen X, Zhong B, Gilvary DL, Zhou J, Wei S, Djeu JY (2007) Clusterin mediates TRAIL resistance in prostate tumor cells. Mol Cancer Ther 6:2938–2947PubMedCrossRefGoogle Scholar
  5. 5.
    Ganapathy S, Chen Q, Singh KP, Shankar S, Srivastava RK (2010) Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS One 5(12):e15627PubMedCrossRefGoogle Scholar
  6. 6.
    Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK (2010) Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One 5(12):e15288PubMedCrossRefGoogle Scholar
  7. 7.
    Gill C, Walsh SE, Morrissey C, Fitzpatrick JM, Watson RW (2007) Resveratrol sensitizes androgen independent prostate cancer cells to death-receptor mediated apoptosis through multiple mechanisms. Prostate 67:1641–1653PubMedCrossRefGoogle Scholar
  8. 8.
    Shankar S, Chen Q, Siddiqui I, Sarva K, Srivastava RK (2007) Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3,4′,5 tri-hydroxystilbene): molecular mechanisms and therapeutic potential. J Mol Signal 2:7PubMedCrossRefGoogle Scholar
  9. 9.
    Andrzejewski T, Deeb D, Gao X, Danyluk A, Arbab AS, Dulchavsky SA, Gautam SC (2008) Therapeutic efficacy of curcumin/TRAIL combination regimen for hormone-refractory prostate cancer. Oncol Res 17:257–267PubMedCrossRefGoogle Scholar
  10. 10.
    Shankar S, Ganapathy S, Chen Q, Srivastava RK (2008) Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Mol Cancer 7:16PubMedCrossRefGoogle Scholar
  11. 11.
    Deeb D, Jiang H, Gao X, Al-Holou S, Danyluk AL, Dulchavsky SA, Gautam SC (2007) Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1–6-heptadine-3,5-dione; C21H20O6] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nuclear factor-kappaB via inhibition of the prosurvival Akt signaling pathway. J Pharmacol Exp Ther 321:616–625PubMedCrossRefGoogle Scholar
  12. 12.
    Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S (2007) Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle 6:2953–2961PubMedCrossRefGoogle Scholar
  13. 13.
    Shankar S, Chen Q, Sarva K, Siddiqui I, Srivastava RK (2007) Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J Mol Signal 2:10PubMedCrossRefGoogle Scholar
  14. 14.
    Siddiqui IA, Malik A, Adhami VM, Asim M, Hafeez BB, Sarfaraz S, Mukhtar H (2008) Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 27:2055–2063PubMedCrossRefGoogle Scholar
  15. 15.
    Ahmad KA, Harris NH, Johnson AD, Lindvall HC, Wang G, Ahmed K (2007) Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells. Mol Cancer Ther 6:1006–1012PubMedCrossRefGoogle Scholar
  16. 16.
    Sanna V, Pintus G, Roggio AM, Punzoni S, Posadino AM, Arca A, Marceddu S, Bandiera P, Uzzau S, Sechi M (2011) Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells. J Med Chem 54(5):1321–1332PubMedCrossRefGoogle Scholar
  17. 17.
    Rocha S, Generalov R, Pereira Mdo C, Peres I, Juzenas P, Coelho MA (2011) Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention. Nanomedicine (Lond) 6:79–87CrossRefGoogle Scholar
  18. 18.
    Seon MR, Lim SS, Choi HJ, Park SY, Cho HJ, Kim JK, Kim J, Kwon DY, Park JH (2010) Isoangustone A present in hexane/ethanol extract of Glycyrrhiza uralensis induces apoptosis in DU145 human prostate cancer cells via the activation of DR4 and intrinsic apoptosis pathway. Mol Nutr Food Res 54:1329–1339PubMedCrossRefGoogle Scholar
  19. 19.
    Szliszka E, Czuba ZP, Mazur B, Sedek L, Paradysz A, Krol W (2009) Chalcones enhance TRAIL-induced apoptosis in prostate cancer cells. Int J Mol Sci 11:1–13PubMedCrossRefGoogle Scholar
  20. 20.
    Szliszka E, Czuba ZP, Mazur B, Paradysz A, Krol W (2010) Chalcones and dihydrochalcones augment TRAIL-mediated apoptosis in prostate cancer cells. Molecules 15:5336–5353PubMedCrossRefGoogle Scholar
  21. 21.
    Szliszka E, Czuba ZP, Sędek L, Paradysz A, Król W (2011) Enhanced TRAIL-mediated apoptosis in prostate cancer cells by the bioactive compounds neobavaisoflavone and psoralidin isolated from Psoralea corylifolia. Pharmacol Rep 63:139–148PubMedGoogle Scholar
  22. 22.
    Tang Y, Li X, Liu Z, Simoneau AR, Xie J, Zi X, Flavokawain B (2010) A kava chalcone, induces apoptosis via up-regulation of death-receptor 5 and Bim expression in androgen receptor negative, hormonal refractory prostate cancer cell lines and reduces tumor growth. Int J Cancer 127:1758–1768PubMedCrossRefGoogle Scholar
  23. 23.
    Szliszka E, Zydowicz G, Janoszka B, Dobosz C, Kowalczyk-Ziomek G, Krol W (2011) Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis. Int J Oncol 38:941–953PubMedGoogle Scholar
  24. 24.
    Sung B, Park B, Yadav VR, Aggarwal BB (2010) Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors. J Biol Chem 285:11498–11507PubMedCrossRefGoogle Scholar
  25. 25.
    Yodkeeree S, Sung B, Limtrakul P, Aggarwal BB (2009) Zerumbone enhances TRAIL-induced apoptosis through the induction of death receptors in human colon cancer cells: evidence for an essential role of reactive oxygen species. Cancer Res 69:6581–6589PubMedCrossRefGoogle Scholar
  26. 26.
    Lee DH, Rhee JG, Lee YJ (2009) Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin. Br J Pharmacol 157:1189–1202PubMedCrossRefGoogle Scholar
  27. 27.
    Son YG, Kim EH, Kim JY, Kim SU, Kwon TK, Yoon AR, Yun CO, Choi KS (2007) Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Res 67:8274–8284PubMedCrossRefGoogle Scholar
  28. 28.
    Deep G, Gangar SC, Oberlies NH, Kroll DJ, Agarwal R (2010) Isosilybin A induces apoptosis in human prostate cancer cells via targeting Akt, NF-κB, and androgen receptor signaling. Mol Carcinog 49:902–912PubMedCrossRefGoogle Scholar
  29. 29.
    Farooqi AA, Fayyaz S, Mansoor Q, Ismail M, Bhatti S (2011) Towards TRAIL to silencing of SMURF and NEDD4: FLIP is flopped. J Exp Integr Med 1:111–116CrossRefGoogle Scholar
  30. 30.
    Farooqi AA, Bhatti S, Rana A, Fayyaz S, Mansoor Q, Javed Z, Riaz AM, Nisar K, Ahsan QA, Dilawar BA, Asif H, Khanum R, Javeed MK (2011) Shattering the underpinnings of neoplastic architecture in LNCap: synergistic potential of nutraceuticals in dampening PDGFR/EGFR signaling and cellular proliferation. J Exp Ther Oncol 9(3):201–206Google Scholar
  31. 31.
    Farooqi AA, Mansoor Q, Ismail M, Bhatti S (2010) Therapeutic effect of epigallocatechin-3-gallate (EGCG) and silibinin on ATM dynamics in prostate cancer cell line LNCaP. World J Oncol 1:242–246Google Scholar
  32. 32.
    Farooqi AA, Mukhtar S, Riaz AM, Waseem S, Minhaj S, Dilawar BA, Malik BA, Nawaz A, Bhatti S (2011) Wnt and SHH in prostate cancer: trouble mongers occupy the TRAIL towards apoptosis. Cell Prolif 44(6):508–515. doi: 10.1111/j.1365-2184.2011.00784.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ammad Ahmad Farooqi
    • 1
    Email author
  • Aamir Rana
    • 2
  • Asma M. Riaz
    • 1
  • Ammara Khan
    • 2
  • Muhammad Ali
    • 1
  • Sara Javed
    • 1
  • Shahzeray Mukhtar
    • 1
  • Sehrish Minhaj
    • 1
  • Javeria Rafique Rao
    • 1
  • Javairia Rajpoot
    • 1
  • Rafia Amber
    • 1
  • Fiza Asif Javed
    • 1
  • Waqar-un-Nisa
    • 1
  • Reema Khanum
    • 1
  • Shahzad Bhatti
    • 1
  1. 1.Institute of Molecular Biology and Biotechnology (IMBB)The University of LahoreLahorePakistan
  2. 2.NUST Centre of Virology and Immunology (NCVI)National University of Science and TechnologyIslamabadPakistan

Personalised recommendations