Molecular Biology Reports

, Volume 39, Issue 4, pp 3943–3950 | Cite as

Effects of polymorphisms in the 3′ untranslated region of the porcine PPARGC1A gene on muscle fiber characteristics and meat quality traits

  • Jun-Seong Lee
  • Jun-Mo Kim
  • Jae-Sang Hong
  • Kyu-Sang Lim
  • Ki-Chang Hong
  • Young Sik Lee


Peroxisome proliferator-activated receptor γ coactivator 1 α (PPARGC1A) is a transcriptional coactivator that is involved in a variety of biological processes including muscle fiber type composition. Here, we identified two single nucleotide polymorphisms (SNPs; *2690T>C and *2864T>C) and one insertion/deletion in the 3′ untranslated region of porcine PPARGC1A. These SNPs were genotyped by direct sequencing in a total of 439 pigs representing three different pig breeds (Berkshire, n = 156; Yorkshire, n = 163; Landrace, n = 120). We evaluated the effects of diplotypes of individual PPARGC1A 3′UTR SNPs on muscle fiber characteristics and meat quality traits. The *2690T>C polymorphism was significantly associated with the percentage of type I and IIb fibers for both muscle fiber number and area composition (P < 0.05), and also showed a significant association with muscle pH, a parameter of meat quality (P = 0.0188). The *2864T>C polymorphism was also associated with meat quality traits including muscle pH (P = 0.0071), drip loss (P = 0.0006), and lightness (P = 0.0702), but showed no significant association with muscle fiber characteristics. Interestingly, each SNP affected PPARGC1A expression significantly at the protein level but not at the mRNA level, thereby accounting for phenotypic variability among genotypes. Taken together, our data suggest that the *2690T>C and *2864T>C polymorphisms can be used as genetic markers for selection toward improved meat quality.


PPARGC1A 3′UTR Single nucleotide polymorphism Muscle fiber type composition Meat quality 



This work was supported by a grant from the Next-Generation BioGreen 21 Program, Rural Development Administration, Republic of Korea, to Y.S.L (No. PJ0080892011), and by Brain Korea 21 Project from the Ministry of Education, Science, and Technology of Korea. This work was also supported by the Korea Research Foundation Grant funded by the Korean Government to K.C.H (2009-0076865).

Supplementary material

11033_2011_1173_MOESM1_ESM.pdf (174 kb)
Supplementary material 1 (PDF 174 kb)
11033_2011_1173_MOESM2_ESM.pdf (13 kb)
Supplementary material 2 (PDF 13 kb)


  1. 1.
    Fiedler I, Nürnberg K, Hardge T, Nürnberg G, Ender K (2003) Phenotypic variations of muscle fibre and intramuscular fat traits in Longissimus muscle of F2 population Duroc × Berlin Miniature Pig and relationships to meat quality. Meat Sci 63(1):131–139PubMedCrossRefGoogle Scholar
  2. 2.
    Li HD, Lund MS, Christensen OF, Gregersen VR, Henckel P, Bendixen C (2010) Quantitative trait loci analysis of swine meat quality traits. J Anim Sci 88(9):2904–2912PubMedCrossRefGoogle Scholar
  3. 3.
    Fan B, Lkhagvadorj S, Cai W, Young J, Smith RM, Dekkers JC, Huff-Lonergan E, Lonergan SM, Rothschild MF (2010) Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Sci 84(4):645–650PubMedCrossRefGoogle Scholar
  4. 4.
    Markljung E, Braunschweig MH, Karlskov-Mortensen P, Bruun CS, Sawera M, Cho IC, Hedebro-Velander I, Josell A, Lundstrom K, von Seth G, Jorgensen CB, Fredholm M, Andersson L (2008) Genome-wide identification of quantitative trait loci in a cross between Hampshire and Landrace II: meat quality traits. BMC Genet 9:22PubMedCrossRefGoogle Scholar
  5. 5.
    Klont RE, Brocks L, Eikelenboom G (1998) Muscle fibre type and meat quality. Meat Sci 49(Supplement 1):S219–S229CrossRefGoogle Scholar
  6. 6.
    Brown M (1987) Change in fibre size, not number, in ageing skeletal muscle. Age Ageing 16(4):244–248PubMedCrossRefGoogle Scholar
  7. 7.
    Lefaucheur L (2001) Myofiber typing and pig meat production. Slovenian Veterinary Res 38:5–33Google Scholar
  8. 8.
    Ryu YC, Kim BC (2005) The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci 71(2):351–357PubMedCrossRefGoogle Scholar
  9. 9.
    Ryu YC, Kim BC (2006) Comparison of histochemical characteristics in various pork groups categorized by postmortem metabolic rate and pork quality. J Anim Sci 84(4):894–901PubMedGoogle Scholar
  10. 10.
    Karlsson AH, Klont RE, Fernandez X (1999) Skeletal muscle fibres as factors for pork quality. Livestock Product Sci 60(2–3):255–269CrossRefGoogle Scholar
  11. 11.
    Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Develop Biol 16(1):145–171CrossRefGoogle Scholar
  12. 12.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839PubMedCrossRefGoogle Scholar
  13. 13.
    Spiegelman BM, Puigserver P, Wu Z (2000) Regulation of adipogenesis and energy balance by PPARgamma and PGC-1. Int J Obes Relat Metab Disord 24(Suppl 4):S8–S10PubMedCrossRefGoogle Scholar
  14. 14.
    Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413(6852):131–138PubMedCrossRefGoogle Scholar
  15. 15.
    Medina-Gomez G, Gray S, Vidal-Puig A (2007) Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr 10(10A):1132–1137PubMedCrossRefGoogle Scholar
  16. 16.
    Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404(6778):652–660PubMedGoogle Scholar
  17. 17.
    Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1[alpha] drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801PubMedCrossRefGoogle Scholar
  18. 18.
    Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N (2006) PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am J Physiol Endocrinol Metab 291(4):E807–E816PubMedCrossRefGoogle Scholar
  19. 19.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124PubMedCrossRefGoogle Scholar
  20. 20.
    Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, LeBrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J Biol Chem 282(41):30014–30021PubMedCrossRefGoogle Scholar
  21. 21.
    Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296(5566):349–352PubMedCrossRefGoogle Scholar
  22. 22.
    Kunej T, Wu XL, Berlic TM, Michal JJ, Jiang Z, Dovc P (2005) Frequency distribution of a Cys430Ser polymorphism in peroxisome proliferator-activated receptor-gamma coactivator-1 (PPARGC1) gene sequence in Chinese and Western pig breeds. J Anim Breed Genet 122(1):7–11PubMedCrossRefGoogle Scholar
  23. 23.
    Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, Mattheeuws M, Van Zeveren A, Peelman LJ (2006) Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping. Cytogenet Genome Res 112(1–2):106–113PubMedCrossRefGoogle Scholar
  24. 24.
    Stachowiak M, Szydlowski M, Cieslak J, Switonski M (2007) SNPs in the porcine PPARGC1a gene: interbreed differences and their phenotypic effects. Cell Mol Biol Lett 12(2):231–239PubMedCrossRefGoogle Scholar
  25. 25.
    Kim JM, Lee KT, Lim KS, Park EW, Lee YS, Hong KC (2010) Effects of p.C430S polymorphism in the PPARGC1A gene on muscle fibre type composition and meat quality in Yorkshire pigs. Anim Genet 41(6):642–645PubMedCrossRefGoogle Scholar
  26. 26.
    Rohrer GA, Keele JW (1998) Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. J Anim Sci 76(9):2247–2254PubMedGoogle Scholar
  27. 27.
    Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 98(7):3820–3825PubMedCrossRefGoogle Scholar
  28. 28.
    Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23(4):369–379PubMedCrossRefGoogle Scholar
  29. 29.
    Honikel KO (1987) How to measure the water-holding capacity of meat? Recommendation of standardized methods. In: Tarrant PV, Eikelenboom G, Monin G (eds) Evaluation and control of meat quality in pigs. Martinus Nijhoff, Dordrecht, pp 129–142CrossRefGoogle Scholar
  30. 30.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  31. 31.
    Lim DH, Kim J, Kim S, Carthew RW, Lee YS (2008) Functional analysis of dicer-2 missense mutations in the siRNA pathway of Drosophila. Biochem Biophys Res Commun 371(3):525–530CrossRefGoogle Scholar
  32. 32.
    Zhao R-Q, Yang X-J, Xu Q-F, Wei X-H, Xia D, Chen J (2004) Expression of GHR and PGC-1a in association with changes of MyHC isoform types in longissimus muscle of Erhualian and Large White pigs (Sus scrofa) during postnatal growth. Anim Sci 79:203–211Google Scholar
  33. 33.
    Kim J, Bartel DP (2009) Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression. Nat Biotech 27(5):472–477CrossRefGoogle Scholar
  34. 34.
    Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T (2010) The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metabolism 298(4):E799–E806CrossRefGoogle Scholar
  35. 35.
    Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA (2009) miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One 4(5):e5610PubMedCrossRefGoogle Scholar
  36. 36.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRefGoogle Scholar
  37. 37.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798PubMedCrossRefGoogle Scholar
  38. 38.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363PubMedCrossRefGoogle Scholar
  39. 39.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284PubMedCrossRefGoogle Scholar
  40. 40.
    Nielsen M, Hansen JH, Hedegaard J, Nielsen RO, Panitz F, Bendixen C, Thomsen B (2010) MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Anim Genet 41(2):159–168PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jun-Seong Lee
    • 1
  • Jun-Mo Kim
    • 1
  • Jae-Sang Hong
    • 1
  • Kyu-Sang Lim
    • 1
  • Ki-Chang Hong
    • 1
  • Young Sik Lee
    • 1
  1. 1.College of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea

Personalised recommendations