Molecular Biology Reports

, Volume 39, Issue 4, pp 3933–3942 | Cite as

Polymorphisms of the 5′ regulatory region of the porcine PPARGC1A gene and the effects on muscle fiber characteristics and meat quality

  • J. M. Kim
  • K. S. Lim
  • E. A. Lee
  • K. T. Lee
  • T. H. Kim
  • Y. C. Ryu
  • K. C. Hong


The purpose of this study was to determine the structure of the porcine PPARGC1A 5′ upstream region, and to find suitable molecular markers for improved meat quality and good lean meat production. Ten DNA polymorphisms, including 7 SNPs, 2 microsatellites, and 1 insertion or deletion were newly found in the 5′ upstream region of PPARGC1A. Three SNPs that had restriction enzyme site were evaluated for associations with muscle fiber characteristics and production traits. Two hundred fifty-two pigs (Yorkshire and Landrace) were used in this analysis. The c.-2894G>A genotypes was significantly associated with muscle fiber characteristics, including the number of fiber type I and IIb composition (P < 0.05), mean cross-sectional area of fibers (P < 0.01), and fiber number per unit area (P < 0.05). The animals with the GG genotype had a higher percentage of type I fibers and a lower percentage of type IIb fibers with better meat quality [higher pH value (P < 0.05) and lower drip loss (P < 0.05)] and lean meat production [larger loin eye area (P < 0.05)]. Moreover, the mRNA expression levels of PPARGC1A among genotypes were significantly different with the highest level of GG genotype. The c.-2885G>T and c.-1402A>T sites showed similar results that had significant effects on the mean cross-sectional area (CSA; P < 0.05), fiber number per unit area (P < 0.05) and loin eye area (P < 0.01). Therefore, we suggest that the c.-2894G>A polymorphism in the 5′ upstream region of the porcine PPARGC1A gene can be used as a meaningful molecular marker for simultaneous improvement of lean meat production and quality traits.


PPARGC1A Polymorphism Association Muscle fiber composition Meat quality 



This study was supported by the Korea Research Foundation Grant funded by the Korean Government (2009-0076865), by Technology Development Program for Agriculture and Forestry, Ministry for Food, Agriculture and Forestry and Fisheries, and by a grant from the Next-Generation BioGreen 21 Program (No. PJ008089), Rural Development Administration, Republic of Korea.

Supplementary material

11033_2011_1172_MOESM1_ESM.doc (72 kb)
Supplementary material 1 (DOC 72 kb)


  1. 1.
    Fiedler I, Dietl G, Rehfeldt C, Wegner J, Ender K (2004) Muscle fibre traits as additional selection criteria for muscle growth and meat quality in pigs—results of a simulated selection. J Anim Breed Genet 121(5):331–344. doi: 10.1111/j.1439-0388.2004.00466.x CrossRefGoogle Scholar
  2. 2.
    Velarde A, Gispert M, Faucitano L, Alonso P, Manteca X, Diestre A (2001) Effects of the stunning procedure and the halothane genotype on meat quality and incidence of haemorrhages in pigs. Meat Sci 58(3):313–319PubMedCrossRefGoogle Scholar
  3. 3.
    Highley JR, Esiri MM, McDonald B, Roberts HC, Walker MA, Crow TJ (1999) The size and fiber composition of the anterior commissure with respect to gender and schizophrenia. Biol Psychiatry 45(9):1120–1127PubMedCrossRefGoogle Scholar
  4. 4.
    Morita S, Iwamoto H, Fukumitsu Y, Gotoh T, Nishimura S, Ono Y (2000) Heterogeneous composition of histochemical fibre types in the different parts of M. longissimus thoracis from Mishima (Japanese native) steers. Meat Sci 54(1):59–63PubMedCrossRefGoogle Scholar
  5. 5.
    Jurie C, Picard B, Geay Y (1999) Changes in the metabolic and contractile characteristics of muscle in male cattle between 10 and 16 months of age. Histochem J 31:117–122PubMedCrossRefGoogle Scholar
  6. 6.
    Rosser BWC, Norris BJ, Nemeth PM (1992) Metabolic capacity of individual muscle fibers from different anatomic locations. J Histochem Cytochem 40:819–825PubMedCrossRefGoogle Scholar
  7. 7.
    Fiedler I, Ender K, Wicke M, Maak S, Lengerken Gv, Meyer W (1999) Structural and functional characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility (MHS) and different meat quality. Meat Sci 53(1):9–15PubMedCrossRefGoogle Scholar
  8. 8.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839PubMedCrossRefGoogle Scholar
  9. 9.
    Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1[alpha] drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801PubMedCrossRefGoogle Scholar
  10. 10.
    Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16(1):145–171. doi: 10.1146/annurev.cellbio.16.1.145 PubMedCrossRefGoogle Scholar
  11. 11.
    Knutti D, Kralli A (2001) PGC-1, a versatile coactivator. Trends Endocrinol Metab 12(8):360–365PubMedCrossRefGoogle Scholar
  12. 12.
    Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, Mattheeuws M, Van Zeveren A, Peelman LJ (2006) Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping. Cytogenet Genome Res 112(1–2):106–113PubMedCrossRefGoogle Scholar
  13. 13.
    Kunej T, Wu XL, Berlic TM, Michal JJ, Jiang Z, Dovc P (2005) Frequency distribution of a Cys430Ser polymorphism in peroxisome proliferator-activated receptor-gamma coactivator-1 (PPARGC1) gene sequence in Chinese and Western pig breeds. J Anim Breed Genet 122(1):7–11PubMedCrossRefGoogle Scholar
  14. 14.
    Stachowiak M, Szydlowski M, Cieslak J, Switonski M (2007) SNPs in the porcine <i>PPARGC1a</i> gene: Interbreed differences and their phenotypic effects. Cell Mol Biol Lett 12(2):231–239. doi: 10.2478/s11658-006-0066-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Jeon JT, Park EW, Jeon HJ, Kim TH, Lee KT, Cheong IC (2003) A large-insert porcine library with sevenfold genome coverage: a tool for positional cloning of candidate genes for major quantitative traits. Mol Cells 16:113–116PubMedGoogle Scholar
  16. 16.
    Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I accuracy assessment. Genome Res 8(3):175–185. doi: 10.1101/gr.8.3.175 PubMedGoogle Scholar
  17. 17.
    Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8(3):195–202. doi: 10.1101/gr.8.3.195 PubMedGoogle Scholar
  18. 18.
    Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 5. Cold spring Harbor Laboratory press, New YorkGoogle Scholar
  19. 19.
    Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23(4):369–379PubMedCrossRefGoogle Scholar
  20. 20.
    Honikel KO (1987) How to measure the water-holding capacity of meat recommendation of standardized methods. In: Tarrant PV, Eikelenboom G, Monin G (eds) Evaluation and control of meat quality in pigs. Martinus Nijhoff, Dordrecht, pp 129–142CrossRefGoogle Scholar
  21. 21.
    Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ (2006) Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 6:41PubMedCrossRefGoogle Scholar
  22. 22.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  23. 23.
    Pinton P, Schibler L, Cribiu E, Gellin J, Yerle M (2000) Localization of 113 anchor loci in pigs: improvement of the comparative map for humans, pigs, and goats. Mammal Genome 11(4):306–315CrossRefGoogle Scholar
  24. 24.
    Esterbauer H, Oberkofler H, Krempler F, Patsch W (1999) Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 62(1):98–102PubMedCrossRefGoogle Scholar
  25. 25.
    Irrcher I, Ljubicic V, Kirwan AF, Hood DA (2008) AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells. PLoS One 3(10):e3614. doi: 10.1371/journal.pone.0003614 PubMedCrossRefGoogle Scholar
  26. 26.
    Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proc Natl Acad Sci USA 100(12):7111–7116. doi: 10.1073/pnas.1232352100 PubMedCrossRefGoogle Scholar
  27. 27.
    Ryu YC, Kim BC (2006) Comparison of histochemical characteristics in various pork groups categorized by postmortem metabolic rate and pork quality. J Anim Sci 84(4):894–901PubMedGoogle Scholar
  28. 28.
    Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP (2005) PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3(4):e101PubMedCrossRefGoogle Scholar
  29. 29.
    Kim JM, Lee KT, Lim KS, Park EW, Lee YS, Hong KC (2010) Effects of p.C430S polymorphism in the PPARGC1A gene on muscle fibre type composition and meat quality in Yorkshire pigs. Anim Genet 41(6):642–645. doi: 10.1111/j.1365-2052.2010.02042.x PubMedCrossRefGoogle Scholar
  30. 30.
    Fiedler I, Nurnberg K, Hardge T, Nurnberg G, Ender K (2003) Phenotypic variations of muscle fibre and intramuscular fat traits in Longissimus muscle of F2 population DurocxBerlin Miniature Pig and relationships to meat quality. Meat Sci 63(1):131–139PubMedCrossRefGoogle Scholar
  31. 31.
    Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6):361–370PubMedCrossRefGoogle Scholar
  32. 32.
    Ryu YC, Kim BC (2005) The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci 71(2):351–357PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. M. Kim
    • 1
  • K. S. Lim
    • 1
  • E. A. Lee
    • 1
  • K. T. Lee
    • 2
  • T. H. Kim
    • 2
  • Y. C. Ryu
    • 3
  • K. C. Hong
    • 1
  1. 1.Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySungbuk-gu, SeoulSouth Korea
  2. 2.Animal Genomics and Bioinformatics Division, National Institute of Animal ScienceRural Development AdministrationKwonsun-gu, SuwonSouth Korea
  3. 3.Faculty of Biotechnology, College of Applied Life SciencesJeju National UniversityJeju-siSouth Korea

Personalised recommendations