Molecular Biology Reports

, Volume 39, Issue 3, pp 3235–3243 | Cite as

Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus

  • Insaf Thabet
  • Grégory Guirimand
  • Anthony Guihur
  • Arnaud Lanoue
  • Vincent Courdavault
  • Nicolas Papon
  • Sadok Bouzid
  • Nathalie Giglioli-Guivarc’h
  • Andrew J. Simkin
  • Marc Clastre
Article

Abstract

The enzyme geranylgeranyl diphosphate synthase (GGPS: EC 2.5.1.1, EC 2.5.1.10, EC 2.5.1.29) catalyses the formation of geranylgeranyl diphosphate (GGPP) from isopentenyl diphosphate and dimethylallyl diphosphate via three successive condensation reactions. A full-length nucleotide sequence of GGPS (named CrGGPS) was cloned from the medicinal plant Catharanthus roseus. The deduced polypeptide has 383 amino acids with a calculated mass of 41.6 kDa and possesses prenyltransferase signatures characteristic of plant type II GGPS. The enzyme was characterized by functional complementation in carotenoid accumulating strains of Escherichia coli. When cultures of Catharanthus cell lines were treated with methyljasmonate, no specific increase in transcript levels were observed. In plants, GGPS are encoded by a small multigene family and the isoforms have been shown to be localized in three different subcellular compartments: chloroplast, endoplasmic reticulum and mitochondria. We investigated the subcellular distribution of CrGGPS through transient transformations of C. roseus cells with a yellow fluorescent protein-fused construct. Our results clearly indicate that CrGGPS is located to plastids within stroma and stromules.

Keywords

Geranylgeranyl diphosphate synthase Isoprenoid Chloroplast Stromule Catharanthus roseus 

References

  1. 1.
    Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429PubMedCrossRefGoogle Scholar
  2. 2.
    Rodriguez-Concepcion M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5:1–15CrossRefGoogle Scholar
  3. 3.
    Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eval Y (2008) Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol 148:1219–1228PubMedCrossRefGoogle Scholar
  4. 4.
    Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc’h N, Clastre M (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta doi:10.1007/s00425-011-1444-6
  5. 5.
    Rohmer M (2008) From molecular fossils of bacterial hopanoids to the formation of isoprene units: discovery and elucidation of the methylerythritol phosphate pathway. Lipids 43:1095–1107PubMedCrossRefGoogle Scholar
  6. 6.
    Vandermoten S, Haubruge E, Cusson M (2009) New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66:3685–3695PubMedCrossRefGoogle Scholar
  7. 7.
    Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122:1045–1056PubMedCrossRefGoogle Scholar
  8. 8.
    Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc’h N (2009) Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus. Plant Cell Rep 28:83–93PubMedCrossRefGoogle Scholar
  9. 9.
    Van der Heijden R, Jacobs DI, Snoeijer W, Halland D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:1241–1253CrossRefGoogle Scholar
  10. 10.
    Oudin A, Courtois M, Rideau M, Clastre M (2007) The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem Rev 6:259–276CrossRefGoogle Scholar
  11. 11.
    Hedhili S, Courdavault V, Giglioli-Guivarc’h N, Gantet P (2007) Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochem Rev 6:341–351CrossRefGoogle Scholar
  12. 12.
    Clastre (1993) Purification et caractérisation de la géranyl diphosphate synthase de cellules de Vitis vinifera L. cv Muscat de Frontignan cultivées in vitro. PhD thesis, Institut National Polytechnique de Toulouse, FranceGoogle Scholar
  13. 13.
    Thabet I, Guirimand G, Papon N, Courdavault V, Godet S, Dutilleul C, Giglioli-Guivarc’h N, Bouzid S, Clastre M, Simkin AJ (2011) The subcellular localisation of periwinkle farnesyl diphosphate synthase gives insight into the role of peroxisome in isoprenoid biosynthesis. J Plant Physiol (submitted)Google Scholar
  14. 14.
    Bantignies B, Liboz T, Ambid C (1995) Nucleotide sequence of a Catharanthus roseus geranylgeranyl pyrophosphate synthase gene (Accession No. X92893) (PGR95-119). Plant Physiol 110:336Google Scholar
  15. 15.
    Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  16. 16.
    Arvy MP, Imbault N, Naudascher F, Thiersault M, Doireau P (1994) 2, 4-d and alkaloid accumulation in periwinkle cell suspensions. Biochimie 76:410–416PubMedCrossRefGoogle Scholar
  17. 17.
    Simkin AJ, Moreau H, Kuntz M, Pagny G, Lin C, Tanksley S, McCarthy J (2008) An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. J Plant Physiol 165:1087–1106PubMedCrossRefGoogle Scholar
  18. 18.
    Cunningham FX, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626PubMedCrossRefGoogle Scholar
  19. 19.
    Cunningham FX, Gantt E (2007) A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study. Photosynth Res 92:245–259PubMedCrossRefGoogle Scholar
  20. 20.
    Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Rose USR (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588PubMedCrossRefGoogle Scholar
  21. 21.
    Fraser PD, Pinto ME, Holloway DE, Bramley PM (2000) Technical advance: application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–558PubMedCrossRefGoogle Scholar
  22. 22.
    Guirimand G, Burlat V, Oudin A, Lanoue A, St-Pierre B, Courdavault V (2009) Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep 28:1215–1234PubMedCrossRefGoogle Scholar
  23. 23.
    Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-Guivarc’h N, St-Pierre B, Burlat V (2010) Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10:182PubMedGoogle Scholar
  24. 24.
    Gantet P, Imbault N, Thiersault M, Doireau P (1998) Necessity of a functional octadecanoic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspension cultured in an auxin-starved medium. Plant Cell Physiol 39:220–225Google Scholar
  25. 25.
    Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodriguez-Concepcion M, St-Pierre B, Burlat V (2007) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65:13–30PubMedCrossRefGoogle Scholar
  26. 26.
    van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297PubMedCrossRefGoogle Scholar
  27. 27.
    Gerber E, Hemmerlin A, Hartmann M, Heintz D, Hartmann MA, Mutterer J, Rodríguez-Concepción M, Boronat A, Van Dorsselaer A, Rohmer M, Crowell DN, Bach TJ (2009) The plastidial 2-C-methyl-d-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. Plant Cell 21:285–300PubMedCrossRefGoogle Scholar
  28. 28.
    Hefner J, Ketchum RE, Croteau R (1998) Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys 360:62–74PubMedCrossRefGoogle Scholar
  29. 29.
    Wang Y, Miao Z, Tang K (2010) Molecular cloning and functional expression analysis of a new gene encoding geranylgeranyl diphosphate synthase from hazel (Corylus avellana L. Gasaway). Mol Biol Rep 37:3439–3444PubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt A, Gershenzon J (2007) Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation. Phytochemistry 68:2649–2659PubMedCrossRefGoogle Scholar
  31. 31.
    Ament K, Van Schie CC, Bouwmeester HJ, Haring MA, Schuurink RC (2006) Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E, E)-4, 8, 12-trimethyltrideca-1, 3, 7, 11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta 224:1197–1208PubMedCrossRefGoogle Scholar
  32. 32.
    Kuntz M, Römer S, Suire C, Hugueney P, Weil JH, Schantz R, Camara B (1992) Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annum: correlative increase in enzyme activity and transcript level during fruit ripening. Plant J 2:25–34PubMedGoogle Scholar
  33. 33.
    Zhu XF, Suzuki K, Saito T, Okada K, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1997) Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria. Plant Mol Biol 35:331–341PubMedCrossRefGoogle Scholar
  34. 34.
    Kwok EY, Hanson MR (2004) GFP-labelled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids. J Exp Bot 55:595–604PubMedCrossRefGoogle Scholar
  35. 35.
    Suire C, Bouvier F, Backhaus RA, Bégu D, Bonneu M, Camara B (2000) Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiol 124:971–978PubMedCrossRefGoogle Scholar
  36. 36.
    Sitthithaworn W, Kojima N, Viroonchatapan E, Suh DY, Iwanami N, Hayashi T, Noji M, Saito K, Niwa Y, Sankawa U (2000) Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis. Chem Pharm Bull 49:197–202CrossRefGoogle Scholar
  37. 37.
    Engprasert S, Taura F, Kawamukai M, Shoyama Y (2004) Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq. BMC Plant Biol 4:18PubMedCrossRefGoogle Scholar
  38. 38.
    Kwok EY, Hanson MR (2004) Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep 23:188–195PubMedCrossRefGoogle Scholar
  39. 39.
    Schattat M, Barton K, Baudisch B, Klösgen RB, Mathur J (2011) Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiol 155:1667–1677PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Insaf Thabet
    • 1
    • 2
  • Grégory Guirimand
    • 1
  • Anthony Guihur
    • 1
  • Arnaud Lanoue
    • 1
  • Vincent Courdavault
    • 1
  • Nicolas Papon
    • 1
  • Sadok Bouzid
    • 2
  • Nathalie Giglioli-Guivarc’h
    • 1
  • Andrew J. Simkin
    • 1
  • Marc Clastre
    • 1
  1. 1.EA2106, Biomolécules et Biotechnologies végétalesUniversité François-RabelaisToursFrance
  2. 2.Département des Sciences Biologiques, Laboratoire de Biotechnologie et Physiologie VégétaleFaculté des Sciences de TunisTunisTunisie

Personalised recommendations