Molecular Biology Reports

, Volume 39, Issue 3, pp 2937–2943 | Cite as

Expression and characterization of a cold-active and xylose-stimulated β-glucosidase from Marinomonas MWYL1 in Escherichia coli

  • Wei Zhao
  • Rihe Peng
  • Aisheng Xiong
  • Xiaoyan Fu
  • Yongsheng Tian
  • Quanhong Yao


The gene encoding a cold-active and xylose-stimulated β-glucosidase of Marinomonas MWYL1 was synthesized and expressed in Escherichia coli. The recombinant enzyme (reBglM1) was purified and characterized. The molecular mass of the purified reBglM1 determined by SDS-PAGE agree with the calculated values (50.6 Da). Optima of temperature and pH for enzyme activity were 40°C and 7.0, respectively. The enzyme exhibited about 20% activity at 5°C and was stable over the range of pH 5.5–10.0. The presence of xylose significantly enhanced enzyme activity even at higher concentrations up to 600 mM, with maximal stimulatory effect (about 1.45-fold) around 300 mM. The enzyme is active with both glucosides and galactosides and showed high catalytic efficiency (kcat = 500.5 s−1) for oNPGlc. These characterizations enable the enzyme to be a promising candidate for industrial applications.


β-Glucosidase Glycoside hydrolase family 1 Marinomonas MWYL1 Cold-active Xylose-stimulated 

Supplementary material

11033_2011_1055_MOESM1_ESM.doc (188 kb)
Supplementary material 1 (DOC 188 kb)


  1. 1.
    Singh A, Hayashi K (1995) Construction of chimeric β-glucosidases with improved enzymatic properties. J Biol Chem 270(37):21928–21933PubMedCrossRefGoogle Scholar
  2. 2.
    Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407PubMedCrossRefGoogle Scholar
  3. 3.
    Saha BC, Freer SN, Bothast RJ (1994) Production, purification, and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Appl Environ Microbiol 60:3774–3780PubMedGoogle Scholar
  4. 4.
    Parry NJ, Beever DE, Owen E, Vandenberghe I, Beeumen JV, Bhat MK (2001) Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem J 353:117–127PubMedCrossRefGoogle Scholar
  5. 5.
    Gu NY, Kim JL, Kim HJ, You DJ, Kim HW, Jeon SJ (2009) Gene cloning and enzymatic properties of hyperthermostable β-glycosidase from Thermus thermophilus HJ6. J Biosci Bioeng 107(1):21–26PubMedCrossRefGoogle Scholar
  6. 6.
    Zanoelo FF, Polizeli MLTM, Terenzi HF, Jorge JA (2004) β-Glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett 240:137–143PubMedCrossRefGoogle Scholar
  7. 7.
    Shipkowski S, Brenchley JE (2005) Characterization of an unusual cold-active β-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl Environ Microbiol 71(8):4225–4232PubMedCrossRefGoogle Scholar
  8. 8.
    Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28(21):4317–4331PubMedCrossRefGoogle Scholar
  9. 9.
    Reysenbach AL, Flores GE (2008) Electron microscopy encounters with unusual thermophiles helps direct genomic analysis of Aciduliprofundum boonei. Geobiology 6(3):331–336PubMedCrossRefGoogle Scholar
  10. 10.
    Rasmussen MD, Andersen JT, Jørgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5(10):R77PubMedCrossRefGoogle Scholar
  11. 11.
    Xiong AS, Yao HQ, Peng RH, Li X, Fan HQ, Li Y, Cheng ZM (2004) A simple, rapid, high fidelity and cost-effective PCR based two-step DNA synthesis (PTDS) method for long gene sequences. Nuc Aci Res 32:e98CrossRefGoogle Scholar
  12. 12.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New YorkGoogle Scholar
  13. 13.
    Hugget ASC, Nixon DA (1957) Glucose oxidase method for measurement of glucose. Biochem J 6:12–19Google Scholar
  14. 14.
    Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (1989) Cellulase families revealed by hydrophobic cluster-analysis. Gene 81:83–95PubMedCrossRefGoogle Scholar
  15. 15.
    Narang SA (1984) Chemical synthesis, cloning and expression of human preproinsulin gene. J Biosci 6(5):739–755CrossRefGoogle Scholar
  16. 16.
    Joo AR, Jeya M, Lee KM, Sim WI, Kim JS, Kim IW, Kim YS, Oh DK, Gunasekaran P, Lee JK (2009) Purification and characterization of a β-1, 4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Appl Microbiol Biotechnol 83:285–294PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu HY, Tian Y, Hou YH, Wang TH (2009) Purification and characterization of the cold-active alkaline protease from marine cold-adaptive Penicillium chrysogenum FS010. Mol Biol Rep 36(8):2169–2174PubMedCrossRefGoogle Scholar
  18. 18.
    Kim HR, Hou CT, Lee KT, Kim BH, Kim IH (2010) Enzymatic synthesis of structured lipids using a novel cold-active lipase from Pichia lynferdii NRRL Y-7723. Food Chem 122:846–849CrossRefGoogle Scholar
  19. 19.
    Hernandez OP, Cersosimo M, Loscos N, Cacho J, Garcia-Moruno E, Ferreira V (2009) Aroma development from non-floral grape precursors by wine lactic acid bacteria. Food Res Int 42:773–781CrossRefGoogle Scholar
  20. 20.
    Belancic A, Gunata Z, Vallier MJ, Agosin E (2003) β-Glucosidase from the grape native yeast Debaryomyces vanrijiae: Purification, characterization, and its effects on monoterpene content of a Muscat grape juice. J Agric Food Chem 51:1453–1459PubMedCrossRefGoogle Scholar
  21. 21.
    Sarney D, Vulfson E (1995) Application of enzymes to the synthesis of surfactants. Trends Biotechnol 13:164–172PubMedCrossRefGoogle Scholar
  22. 22.
    Feller G, Arpigny JL, Narinx E, Gerday C (1997) Molecular adaptations of enzymes from psychrophilic organisms. Comp Biochem Physiol 118A:495–499CrossRefGoogle Scholar
  23. 23.
    Xiong AS, Yao QH, Peng RH, Chen JM, Li X, Fan HQ (2002) Molecular evolution of β-glucuronidase in vitro: obtaining thermotolerant GUS gene. Yi Chuan Xue Bao 29:1034–1104PubMedGoogle Scholar
  24. 24.
    Karnchanata A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJ, Reynolds CD, Sihanonth P (2007) Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. FEMS Microbiol Lett 270:162–170CrossRefGoogle Scholar
  25. 25.
    Inglin M, Feinberg BA, Loewenberg JR (1980) Partial purification and characterization of a new intracellular β-glucosidase of Trichoderma reesei. Biochem J 185:515–519PubMedGoogle Scholar
  26. 26.
    Riou C, Salmon JM, Vallier MJ, Günata Z, Barre P (1998) Purification, characterization and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614PubMedGoogle Scholar
  27. 27.
    Chauve M, Mathis H, Huc D, Casanave D, Monot F, Ferreira NL (2010) Comparative kinetic analysis of two fungal β-glucosidases. Biotechnol Biofuels 3:3PubMedCrossRefGoogle Scholar
  28. 28.
    Souza FHM, Nascimento GV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45:272–278CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Wei Zhao
    • 1
  • Rihe Peng
    • 1
  • Aisheng Xiong
    • 1
  • Xiaoyan Fu
    • 1
  • Yongsheng Tian
    • 1
  • Quanhong Yao
    • 1
  1. 1.Biotechnology Research InstituteShanghai Academy of Agricultural SciencesShanghaiChina

Personalised recommendations