Molecular Biology Reports

, Volume 39, Issue 3, pp 2713–2722 | Cite as

miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia

  • Fang Wang
  • Xiao-Shuang Wang
  • Gui-Hua Yang
  • Peng-Fei Zhai
  • Zhen Xiao
  • Liang-Yu Xia
  • Li-Rong Chen
  • Yu Wang
  • Xiao-Zhong Wang
  • Lai-Xi Bi
  • Nian Liu
  • Yang Yu
  • Da Gao
  • Bin-Tao Huang
  • Jing Wang
  • Dao-Bin Zhou
  • Jia-Nan Gong
  • Hua-Lu Zhao
  • Xiu-Hua Bi
  • Jia Yu
  • Jun-Wu Zhang


Expression profiling of microRNAs (miRNAs) in most diseases might be popular and provide the possibility for diagnostic implication, but few studies have accurately quantified the expression level of dysregulated miRNAs in acute myeloid leukemia (AML). In this study, we analyzed the peripheral blood mononuclear cells (PBMCs) from 10 AML patients (subtypes M1 to M5) and six normal controls by miRNA microarray and identified several differentially expressed miRNAs. Among them miR-29a and miR-142-3p were selectively encountered in Northern blot analysis and their significantly decreased expression in AML was further confirmed. Quantitative real-time PCR in 52 primarily diagnosed AML patients and 100 normal controls not only verified the expression properties of these 2 miRNAs, but also established that the expression level of miR-142-3p and miR-29a in PBMCs could be used as novel diagnostic markers. A better diagnostic outcome was achieved by combining miR-29a and miR-142-3p with about 90% sensitivity, 100% specificity, and an area under the ROC curve (AUC) of 0.97. Our results provide insights into the involvement of miRNAs in leukemogenesis, and offer candidates for AML diagnosis and therapeutic strategy.


MicroRNAs (miRNAs) Acute myeloid leukemia (AML) Expression profile miR-29a miR-142-3p 



This work was supported by grants from the National Natural Science Foundation of China (No. 30970616 and No. 3072106) and grants from the Specific Found of National Laboratory of China (No. 3060204).

Conflict of Interest


Supplementary material

11033_2011_1026_MOESM1_ESM.doc (98 kb)
Supplementary material 1 (DOC 98 kb)
11033_2011_1026_MOESM2_ESM.doc (181 kb)
Supplementary material 2 (DOC 181 kb)
11033_2011_1026_MOESM3_ESM.doc (376 kb)
Supplementary material 3 (DOC 376 kb)
11033_2011_1026_MOESM4_ESM.doc (110 kb)
Supplementary material 4 (DOC 110 kb)


  1. 1.
    Frankfurt O, Licht JD, Tallman MS (2007) Molecular characterization of acute myeloid leukemia and its impact on treatment. Curr Opin Oncol 19:635–649PubMedCrossRefGoogle Scholar
  2. 2.
    Haferlach T, Bacher U, Haferlach C, Kern W, Schnittger S (2007) Insight into the molecular pathogenesis of myeloid malignancies. Curr Opin Hematol 14:90–97PubMedCrossRefGoogle Scholar
  3. 3.
    Chang TC, Mendell JT (2007) MicroRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 8:215–239PubMedCrossRefGoogle Scholar
  4. 4.
    Stefani G (2007) Roles of microRNAs and their targets in cancer. Expert Opin Biol Ther 7:1833–1840PubMedCrossRefGoogle Scholar
  5. 5.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949PubMedCrossRefGoogle Scholar
  6. 6.
    Marton S, Garcia MR, Robello C, Persson H, Trajtenberg F, Pritsch O et al (2008) Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 22:330–338PubMedCrossRefGoogle Scholar
  7. 7.
    Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2010) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46CrossRefGoogle Scholar
  8. 8.
    Iorio MV, Casalini P, Tagliabue E, Ménard S, Croce CM (2008) MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur J Cancer 44:2753–2759PubMedCrossRefGoogle Scholar
  9. 9.
    Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE (2009) The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 112:55–59PubMedCrossRefGoogle Scholar
  10. 10.
    Osaki M, Takeshita F, Ochiya T (2008) MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers 13:658–670PubMedCrossRefGoogle Scholar
  11. 11.
    Marcucci G, Radmacher MD, Maharry K, Mrózek K, Ruppert AS, Paschka P et al (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358:1919–1928PubMedCrossRefGoogle Scholar
  12. 12.
    Whitman SP, Maharry K, Radmacher MD, Becker H, Mrózek K, Margeson D et al (2010) FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood. doi: 10.1182/blood-2010-05-283648
  13. 13.
    Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Löwenberg B (2008) MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111:5078–5085PubMedCrossRefGoogle Scholar
  14. 14.
    Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-McIver A, Young BD (2007) MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21:912–916PubMedGoogle Scholar
  15. 15.
    Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T et al (2008) Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukemia. PLoS ONE 3:e2141PubMedCrossRefGoogle Scholar
  16. 16.
    Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S et al (2010) Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA 107:7473–7478PubMedCrossRefGoogle Scholar
  17. 17.
    Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ et al (2010) Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 17:333–347PubMedCrossRefGoogle Scholar
  18. 18.
    Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Müller-Tidow C, Bohlander SK et al (2010) Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 115:1768–1778PubMedCrossRefGoogle Scholar
  19. 19.
    Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C et al (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 105:3945–3950PubMedCrossRefGoogle Scholar
  20. 20.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86PubMedCrossRefGoogle Scholar
  21. 21.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCrossRefGoogle Scholar
  22. 22.
    Kawai T, Cosimi AB, Spitzer TR, Tolkoff-Rubin N, Suthanthiran M, Saidman SL et al (2008) HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 358:353–361PubMedCrossRefGoogle Scholar
  23. 23.
    Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM (2010) Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51:836–845PubMedGoogle Scholar
  24. 24.
    Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D et al (2010) The miR-144/451 locus is required for erythroid homeostasis. J Exp Med 207:1351–1358PubMedCrossRefGoogle Scholar
  25. 25.
    Merkerova M, Belickova M, Bruchova H (2008) Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol 381:304–310CrossRefGoogle Scholar
  26. 26.
    Choong ML, Yang HH, McNiece I (2007) MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol 35:551–564PubMedCrossRefGoogle Scholar
  27. 27.
    Isken F, Steffen B, Merk S, Dugas M, Markus B, Tidow N et al (2008) Identification of acute myeloid leukaemia associated microRNA expression patterns. Br J Haematol 140:153–161PubMedCrossRefGoogle Scholar
  28. 28.
    Georgantas RW 3rd, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S et al (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 104:2750–2755PubMedCrossRefGoogle Scholar
  29. 29.
    le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A et al (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708PubMedCrossRefGoogle Scholar
  30. 30.
    Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L et al (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70:367–377PubMedCrossRefGoogle Scholar
  31. 31.
    Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ et al (2009) Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113:3314–3322PubMedCrossRefGoogle Scholar
  32. 32.
    Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R et al (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 103:5078–5083PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M et al (2009) A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood 113:2526–2534PubMedCrossRefGoogle Scholar
  34. 34.
    Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA (2010) Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res 70:5147–5154PubMedCrossRefGoogle Scholar
  35. 35.
    Clapé C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F et al (2009) miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS ONE 4:e7542PubMedCrossRefGoogle Scholar
  36. 36.
    Shigoka M, Tsuchida A, Matsudo T, Nagakawa Y, Saito H, Suzuki Y et al (2010) Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol Int 60:351–357PubMedCrossRefGoogle Scholar
  37. 37.
    Shinozaki A, Sakatani T, Ushiku T, Hino R, Isogai M, Ishikawa S et al (2010) Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res 70:4719–4727PubMedCrossRefGoogle Scholar
  38. 38.
    Garzon R, Croce CM (2008) MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358PubMedCrossRefGoogle Scholar
  39. 39.
    Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810PubMedCrossRefGoogle Scholar
  40. 40.
    Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140PubMedCrossRefGoogle Scholar
  41. 41.
    Park SY, Lee JH, Ha M, Nam JW, Kim VN (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16:23–29PubMedCrossRefGoogle Scholar
  42. 42.
    Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L (2010) Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 57:1265–1279CrossRefGoogle Scholar
  43. 43.
    Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V et al (2006) Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66:11590–11593PubMedCrossRefGoogle Scholar
  44. 44.
    Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W et al (2010) microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115:2630–2639PubMedCrossRefGoogle Scholar
  45. 45.
    Kapinas K, Kessler CB, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates WNT signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285:25221–25231PubMedCrossRefGoogle Scholar
  46. 46.
    Gebeshuber CA, Zatloukal K, Martinez J (2009) miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10:400–405PubMedCrossRefGoogle Scholar
  47. 47.
    Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, Sharp PA, Manjunath N (2007) miRNA profiling of naïve, effector and memory CD8 T cells. PLoS ONE 2:e1020PubMedCrossRefGoogle Scholar
  48. 48.
    Bellon M, Lepelletier Y, Hermine O, Nicot C (2009) Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood 113:4914–4917PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Fang Wang
    • 1
  • Xiao-Shuang Wang
    • 1
  • Gui-Hua Yang
    • 1
  • Peng-Fei Zhai
    • 1
  • Zhen Xiao
    • 2
  • Liang-Yu Xia
    • 3
  • Li-Rong Chen
    • 4
  • Yu Wang
    • 5
  • Xiao-Zhong Wang
    • 6
  • Lai-Xi Bi
    • 7
  • Nian Liu
    • 8
  • Yang Yu
    • 9
  • Da Gao
    • 2
  • Bin-Tao Huang
    • 2
  • Jing Wang
    • 2
  • Dao-Bin Zhou
    • 10
  • Jia-Nan Gong
    • 1
  • Hua-Lu Zhao
    • 1
  • Xiu-Hua Bi
    • 1
  • Jia Yu
    • 1
  • Jun-Wu Zhang
    • 1
  1. 1.National Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople’s Republic of China
  2. 2.Department of HematologyThe Affiliated Hospital of Inner Mongolia Medical CollegeHuhehaotePeople’s Republic of China
  3. 3.Clinical LaboratoryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople’s Republic of China
  4. 4.The First People’s Hospital of XinxiangXinxiangPeople’s Republic of China
  5. 5.Xinxiang Central HospitalXinxiangPeople’s Republic of China
  6. 6.Clinical LaboratoryThe Second Affiliated Hospital to Nanchang UniversityNanchangPeople’s Republic of China
  7. 7.Department of HematologyThe First Affiliated Hospital of Wenzhou Medical CollegeWenzhouPeople’s Republic of China
  8. 8.Department of HematologyThe Military General Hospital of Beijing PLABeijingPeople’s Republic of China
  9. 9.Department of HematologyBeijing Shijitan HospitalBeijingPeople’s Republic of China
  10. 10.Department of HematologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople’s Republic of China

Personalised recommendations