Molecular Biology Reports

, Volume 39, Issue 3, pp 2625–2632 | Cite as

Expression of Nogo-66 receptor in human astrocytoma is correlated with tumor malignancy

  • Nanxiang Xiong
  • Jianying Shen
  • Shuai Li
  • Junjun Li
  • Hongyang Zhao
Article

Abstract

Nogo-A is a myelin-associated neuronal growth inhibitory molecule in central nervous system after trauma. However, the physiological functions of Nogo-A in neural development and in healthy oligodendrocytes are largely unknown. In this study, we investigated the expression of Nogo-66 receptor (NgR) protein in 60 cases of human astrocytoma by Western blot RT-PCR and immunohistochemistry. The correlation between the expression of NgR and pathologic grades of astrocyoma was further analyzed. The results showed that the expression of NgR protein and NgR mRNA immunoreactivity score, were decreased markedly with the increasing pathological grades. Double immunostaining results showed that Nogo-A and NgR were colocalized at the interface of astrocytoma cells and extracellular matrix. Our results indicated that NgR may have inhibitory effects on tumor activity and Nogo-A may restrict migration of tumor cells via NgR.

Keywords

Nogo-66 receptor Nogo-A Astrocytoma Myelin Malignancy Expression 

Notes

Acknowledgments

This study was funded by the National Nature Science Foundation of China (30471775, 30801180) and the Hubei Research Development Project Foundation (2005AA301C15).

References

  1. 1.
    Brat DJ, Scheithauer BW, Fuller GN, Tihan T (2007) Newly codified glial neoplasms of the 2007 WHO Classification of Tumours of the Central Nervous System: angiocentric glioma, pilomyxoid astrocytoma and pituicytoma. Brain Pathol 2007(17):319–324CrossRefGoogle Scholar
  2. 2.
    Curran NM, Griffin BD, ‘Toole DO, Brady KJ, Fitzgerald SN, Moynagh PN (2005) The synthetic cannabinoid R(+)WIN 55, 212-2 inhibits the interleukin-1 signaling pathway in human astrocytes in a cannabinoid receptor-independent manner. J Biol Chem. 280:35797–35806PubMedCrossRefGoogle Scholar
  3. 3.
    Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 403:434–439PubMedCrossRefGoogle Scholar
  4. 4.
    Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341–346PubMedCrossRefGoogle Scholar
  5. 5.
    Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) p75 interacts with the Nogo receptor as a co-receptor for Nogo. MAG and OMgp, Nature 420:74–78CrossRefGoogle Scholar
  6. 6.
    Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, Poo MM (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 5:1302–1308PubMedCrossRefGoogle Scholar
  7. 7.
    Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228PubMedCrossRefGoogle Scholar
  8. 8.
    Montani L, Gerrits B, Gehrig BP, Kempf A, Dimou L, Wollscheid B, Schwab ME (2009) Neuronal Nogo-A modulates growth cone motility via Rho-GTP/LIMK1/cofilin in the unlesioned adult nervous system. J Biol Chem. 2009(284):10793–10807CrossRefGoogle Scholar
  9. 9.
    Hsieh SH, Ferraro GB, Fournier AE (2006) Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and Slingshot phosphatase. J Neurosci 26:1006–1015PubMedCrossRefGoogle Scholar
  10. 10.
    Pernet V, Joly S, Christ F, Dimou L, Schwab ME (2008) Nogo-A, myelin-associated glycoprotein differently regulate oligodendrocyte maturation, myelin formation. J Neurosci 28:7435–7444PubMedCrossRefGoogle Scholar
  11. 11.
    Jurewicz A, Matysiak M, Raine CS, Selmaj K (2007) Soluble Nogo-A an inhibitor of axonal regeneration, as a biomarker for multiple sclerosis. Neurology. 68:283–287PubMedCrossRefGoogle Scholar
  12. 12.
    Kuhlmann T, Remington L, Maruschak B, Owens T, Brück W (2007) Nogo-A is a reliable oligodendroglial marker in adult human and mouse CNS and in demyelinated lesions. J Neuropathol Exp Neurol 66:238–246PubMedCrossRefGoogle Scholar
  13. 13.
    Liao H, Duka T, Teng FY, Sun L, Bu WY, Ahmed S, Tang BL, Xiao ZC (2004) Nogo-66 and myelin-associated glycoprotein (MAG) inhibit the adhesion and migration of Nogo-66 receptor expressing human glioma cells. J Neurochem 90:1156–1162PubMedCrossRefGoogle Scholar
  14. 14.
    World Medical Organization (1996) Declaration of Helsinki (1964). Br Med J 313:1448–1449Google Scholar
  15. 15.
    Sinicrope F, Ruan S, Cleary K, Stephens L, Lee J, Levin B (1995) bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res 55:237–241PubMedGoogle Scholar
  16. 16.
    Amberger VR, Hensel T, Ogata N, Schwab ME (1998) Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor malignancy and involves a metalloproteolytic activity. Cancer Res 58:149–158PubMedGoogle Scholar
  17. 17.
    Liu R, Tian B, Gearing M, Hunter S, Ye K, Mao Z (2008) Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc Natl Acad Sci USA. 105:7570–7575PubMedCrossRefGoogle Scholar
  18. 18.
    Oertle T, van der Haar ME, Bandtlow CE, Robeva A, Burfeind P, Buss A, Huber AB, Simonen M, Schnell L, Brösamle C, Kaupmann K, Vallon R, Schwab ME (2003) Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci 23:5393–5406PubMedGoogle Scholar
  19. 19.
    Hu F, Strittmatter SM (2008) The N-terminal domain of Nogo-A inhibits cell adhesion and axonal outgrowth by an integrin-specific mechanism. J Neurosci 28:1262–1269PubMedCrossRefGoogle Scholar
  20. 20.
    Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, Sliwa M, Lehmann S, Kälin R, van Rooijen N, Holmbeck K, Heppner FL, Kiwit J, Matyash V, Lehnardt S, Kaminska B, Glass R, Kettenmann H (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA. 106:12530–12535PubMedCrossRefGoogle Scholar
  21. 21.
    D’Abaco GM, Kaye AH (2007) Integrins: molecular determinants of glioma invasion. J Clin Neurosci. 14:1041–1048PubMedCrossRefGoogle Scholar
  22. 22.
    Tsatas D, Kanagasundaram V, Kaye A, Novak U (2002) EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci. 9:282–288PubMedCrossRefGoogle Scholar
  23. 23.
    Tysnes BB, Mahesparan R (2001) Biological mechanisms of glioma invasion and potential therapeutic targets. J Neurooncol 53:129–147PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nanxiang Xiong
    • 1
  • Jianying Shen
    • 2
  • Shuai Li
    • 1
  • Junjun Li
    • 1
  • Hongyang Zhao
    • 1
  1. 1.Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Section of Histology and Embryology, Department of Anatomy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations