Molecular Biology Reports

, Volume 39, Issue 2, pp 817–824

MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection

  • Om Prakash Gupta
  • Vipin Permar
  • Vikas Koundal
  • Uday Dhari Singh
  • Shelly Praveen
Article

Abstract

Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.

Keywords

miRNA Defense response Signaling Hypersensitive response (HR) R gene 

Supplementary material

11033_2011_803_MOESM1_ESM.doc (32 kb)
Supplementary data: List of miRNA and their primer sequence (online supplementary data) (DOC 32 kb)

References

  1. 1.
    Yang YN, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639PubMedCrossRefGoogle Scholar
  2. 2.
    Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: Cell death programs in plant microbe interactions. Plant Cell 8:793–807CrossRefGoogle Scholar
  3. 3.
    Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819PubMedCrossRefGoogle Scholar
  4. 4.
    Blumwald E, Aharon GS, Lam BC (1998) Early signal transduction pathway in plant pathogen interactions. Trends Plant Sci 3:342–346CrossRefGoogle Scholar
  5. 5.
    Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Ann Rev Plant Biol 57:19–53CrossRefGoogle Scholar
  6. 6.
    Lang Q, Jin CZ, Lai L, Feng J, Chen S, Chen J (2010) Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X. Mol Biol Rep. doi:10.1007/s11033-010-0260-6
  7. 7.
    Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2010) osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep. doi:10.1007/s11033-010-0100-8
  8. 8.
    Liu Q, and Chen YQ (2010) A new mechanism in plant engineering: The potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol Adv. doi:10.1016/j.biotechadv.2010.01.002
  9. 9.
    Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488PubMedCrossRefGoogle Scholar
  10. 10.
    Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386PubMedCrossRefGoogle Scholar
  11. 11.
    Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedCrossRefGoogle Scholar
  12. 12.
    Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365PubMedCrossRefGoogle Scholar
  13. 13.
    Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527PubMedCrossRefGoogle Scholar
  14. 14.
    Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang B, Pan X, Anderson TA (2006) Identification of 188 conserved maize microRNAs and their targets. FEBS Letters 580:3753–3762PubMedCrossRefGoogle Scholar
  16. 16.
    Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci USA 100:16125–16130PubMedCrossRefGoogle Scholar
  17. 17.
    Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8:R96PubMedCrossRefGoogle Scholar
  18. 18.
    Yin J, Wang G, Xiao J, Ma F, Zhang H, Sun Y, Diao Y, Huang J, Guo Q, Liu D (2010) Identification of genes involved in stem rust resistance from wheat mutant D51 with the cDNA-AFLP technique. Mol Bio Rep 37:1111–1117CrossRefGoogle Scholar
  19. 19.
    Anikster Y (1984) The formae specials. In: Bushnell WR, Roelfs AP (eds) The cereal rusts, vol 1. Academic Press, New York London, pp 115–129Google Scholar
  20. 20.
    Seungil Ro, Park C, Jin J, Sanders KM, Yan W (2006) A PCR-based method for detection and quantification of small RNAs. Biochem Biophys Res Commun 351(3):756–763CrossRefGoogle Scholar
  21. 21.
    Stakman EC, and Levine MN (1922) The determination of biologic forms of Puccinia graminis on Triticum spp. Minn Agr Res Stn Bull 8:10Google Scholar
  22. 22.
    Moerschbacher BM, Noll UM, Flott BE, Reisener HJ (1988) Lignin biosynthetic enzymes in stem rust infected resistant and susceptible near-isogenic wheat lines. Physiol Mol Plant Pathol 33:33–46CrossRefGoogle Scholar
  23. 23.
    Heath MC (1994) Genetics and cytology of age-related resistance in North American cultivars of cowpea (Vigna unguiculata (L.) Walp.) to the cowpea rust fungus (Uromyces vignae Baeclay). Can J Bot 73:575–581CrossRefGoogle Scholar
  24. 24.
    Heath MC (1997) Signaling between pathogenic rust fungi and resistant or susceptible host plants. Ann Bot 80:713–720CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Om Prakash Gupta
    • 1
  • Vipin Permar
    • 2
  • Vikas Koundal
    • 2
  • Uday Dhari Singh
    • 2
  • Shelly Praveen
    • 2
  1. 1.Division of BiochemistryIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Division of Plant Pathology, Advanced Centre for Plant Virology Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations