Molecular Biology Reports

, Volume 39, Issue 1, pp 645–659 | Cite as

Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals

  • Lijuan Yang
  • Xianghai Zhou
  • Yingying Luo
  • Xiuqin Sun
  • Yong Tang
  • Wulan Guo
  • Xueyao Han
  • Linong Ji


A number of studies have been performed to identify the association between potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) gene and type 2 diabetes mellitus (T2DM) in East Asian populations, with inconsistent results. The main aim of this work was to evaluate more precisely the genetic influence of KCNJ11 on T2DM in East Asian populations by means of a meta-analysis. We identified 20 articles for qualitative analysis and 16 were eligible for quantitative analysis (meta-analysis) by database searching up to May 2010. The association was assessed under different genetic models, and the pooled odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. The allelic and genotypic contrast demonstrated that the association between KCNJ11 and T2DM was significant for rs5210. However, not all results for rs5215 and rs5218 showed significant associations. For rs5219, the combined ORs (95% CIs) for allelic contrast, dominant and recessive models contrast (with allelic frequency and genotypic distribution data) were 1.139 (1.093–1.188), 1.177 (1.099–1.259) and 1.207 (1.094–1.332), respectively (random effect model). The analysis on the most completely adjusted ORs (95% CIs) by the covariates of rs5219 all presented significant associations under different genetic models. Population-stratified analysis (Korean, Japanese and Chinese) and sensitivity analysis verified the significant results. Cumulative meta-analysis including publication time and sample size illustrated the exaggerated genetic effect in the earliest studies. Heterogeneity and publication bias were assessed. Our study verified that single nucleotide polymorphisms (SNPs) of KCNJ11 gene were significantly associated with the risk of T2DM in East Asian populations.


KCNJ11 Polymorphisms Type 2 diabetes mellitus Meta-analysis Association 



Potassium inwardly-rectifying channel, subfamily J, member 11


Type 2 diabetes mellitus


Odds ratio


Confidence interval


Single nucleotide polymorphism


Genome-wide association study


ATP-sensitive K+ channel


Sulfonylurea receptor 1


China National Knowledge Infrastructure


Meta-analysis of Observation Studies in Epidemiology


Hardy–Weinberg equilibrium


Risk allele/reference allele


Case–control study


Follow-up and cross-sectional study


World Health Organization


American Diabetes Association




PCR–restriction fragment-length polymorphism


TaqMan SNP genotyping assays


Major allele/minor allele


Minor allele frequency


Linkage disequilibrium


A fixed-effect model using the Mantel–Haenszel method


A fixed-effect model using the Inverse-Variance method


A random-effect model using the Der Simonian and Laird method


Not stated



This study was supported by the National Basic Research Program of China (973 program, 2006CB503900) and the National High Technology Research and Development Program of China (863 program, 2006AA02A409).

Supplementary material

11033_2011_782_MOESM1_ESM.doc (174 kb)
Supplementary material 1 (DOC 174 kb)
11033_2011_782_MOESM2_ESM.doc (58 kb)
Supplementary material 2 (DOC 57 kb)


  1. 1.
    O’Rahilly S, Barroso I, Wareham NJ (2005) Genetic factors in type 2 diabetes: the end of the beginning? Science 307(5708):370–373. doi:10.1126/science.1104346 PubMedCrossRefGoogle Scholar
  2. 2.
    Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24(12):613–621. doi:10.1016/j.tig.2008.09.004 PubMedCrossRefGoogle Scholar
  3. 3.
    Aguilar-Bryan L, Clement JP 4th, Gonzalez G, Kunjilwar G, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78(1):227–245PubMedGoogle Scholar
  4. 4.
    Inagaki N, Gonoi T, Clement JP 4th, Namba N, Inazawa J, Gonzalez G et al (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270(5239):1166–1170. doi:10.1126/science.270.5239.1166 PubMedCrossRefGoogle Scholar
  5. 5.
    Tokuyama Y, Fan Z, Furuta H, Makielski JC, Polonsky KS, Bell GI, Yano H (1996) Rat inwardly rectifying potassium channel Kir6.2: cloning electrophysiological characterization, and decreased expression in pancreatic islets of male Zucker diabetic fatty rats. Biochem Biophys Res Commun 220(3):532–538. doi:10.1006/bbrc.1996.0439 PubMedCrossRefGoogle Scholar
  6. 6.
    Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20(2):101–135. doi:10.1210/er.20.2.101 PubMedCrossRefGoogle Scholar
  7. 7.
    Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350(18):1838–1849. doi:10.1056/NEJMoa032922 PubMedCrossRefGoogle Scholar
  8. 8.
    Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336. doi:10.1126/science.1142358 PubMedCrossRefGoogle Scholar
  9. 9.
    Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341. doi:10.1126/science.1142364 PubMedCrossRefGoogle Scholar
  10. 10.
    Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345. doi:10.1126/science.1142382 PubMedCrossRefGoogle Scholar
  11. 11.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053. doi:10.2337/diacare.27.5.1047 PubMedCrossRefGoogle Scholar
  12. 12.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012PubMedCrossRefGoogle Scholar
  13. 13.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. doi:10.1002/sim.1186 PubMedCrossRefGoogle Scholar
  14. 14.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. doi:10.1136/bmj.327.7414.557 PubMedCrossRefGoogle Scholar
  15. 15.
    Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826PubMedGoogle Scholar
  16. 16.
    Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101. doi:10.2307/2533446 PubMedCrossRefGoogle Scholar
  17. 17.
    Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634PubMedCrossRefGoogle Scholar
  18. 18.
    Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463. doi:10.1111/j.0006-341X.2000.00455.x PubMedCrossRefGoogle Scholar
  19. 19.
    Lau J, Antman EM, Jimenez-Silva J, Kupelnick B, Mosteller F, Chalmers TC (1992) Cumulative meta-analysis of therapeutic trials for myocardial infarction. N Engl J Med 327(4):248–254. doi:10.1056/NEJM199207233270406 PubMedCrossRefGoogle Scholar
  20. 20.
    Ioannidis J, Lau J (2001) Evolution of treatment effects over time: empirical insight from recursive cumulative metaanalyses. Proc Natl Acad Sci USA 98(3):831–836. doi:10.1073/pnas.021529998 PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang HF, Wang JF, Wang Y, Zhu LG, Lei L (2010) Complement factor H Y402H gene polymorphism and coronary heart disease susceptibility: a meta-analysis. Mol Biol Rep. doi:10.1007/s11033-010-9956-x
  22. 22.
    Rodriguez S, Gaunt TR, Day IN (2009) Hardy–Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol 169(4):505–514. doi:10.1093/aje/kwn359 PubMedCrossRefGoogle Scholar
  23. 23.
    Doi Y, Kubo M, Ninomiya T, Yonemoto K, Iwase M, Arima H et al (2007) Impact of Kir6.2 E23K polymorphism on the development of type 2 diabetes in a general Japanese population: the Hisayama Study. Diabetes 56(11):2829–2833. doi:10.2337/db06-1709 PubMedCrossRefGoogle Scholar
  24. 24.
    Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, Ohnaka K et al (2009) Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 58(7):1690–1699. doi:10.2337/db08-1494 PubMedCrossRefGoogle Scholar
  25. 25.
    Qing Zhou (2007) Study on the experiments of KCNJ11 E23K variant and genetic susceptibility in type 2 diabetes mellitus. Chin J Hemorheol 17(1):46–48 (in Chinese)Google Scholar
  26. 26.
    Yu M, Xu XJ, Yin JY, Wu J, Chen X, Gong ZC et al (2010) KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin Pharmacol Ther 87(3):330–335. doi:10.1038/clpt.2009.242 PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang XF, Yang MG, Wang CJ, Liu SQ, Wu D, Chen MW et al (2001) The study of the association between Kir6.2 gene polymorphism and type 2 diabetes. Chin J Med Genet 18(6):486–487 (in Chinese)Google Scholar
  28. 28.
    Sakamoto Y, Inoue H, Keshavarz P, Miyawaki K, Yamaguchi Y, Moritani M et al (2007) SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J Hum Genet 52(10):781–793. doi:10.1007/s10038-007-0190-x PubMedCrossRefGoogle Scholar
  29. 29.
    Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I, Miki T et al (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58(2):493–498. doi:10.2337/db07-1785 PubMedCrossRefGoogle Scholar
  30. 30.
    Zhou D, Zhang D, Liu Y, Zhao T, Chen Z, Liu Z et al (2009) The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J Hum Genet 54(7):433–435. doi:10.1038/jhg.2009.54 PubMedCrossRefGoogle Scholar
  31. 31.
    Miyake K, Yang W, Hara K, Yasuda K, Horikawa Y, Osawa H et al (2009) Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the association. J Hum Genet 54(4):236–241. doi:10.1038/jhg.2009.17 PubMedCrossRefGoogle Scholar
  32. 32.
    Yokoi N, Kanamori M, Horikawa Y, Takeda J, Sanke T, Furuta H et al (2006) Association studies of variants in the genes involved in pancreatic beta-cell function in type 2 diabetes in Japanese subjects. Diabetes 55(8):2379–2386. doi:10.2337/db05-1203 PubMedCrossRefGoogle Scholar
  33. 33.
    Koo BK, Cho YM, Park BL, Cheong HS, Shin HD, Jang HC et al (2007) Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with type 2 diabetes and hypertension in the Korean population. Diabet Med 24(2):178–186. doi:10.1111/j.1464-5491.2006.02050.x PubMedCrossRefGoogle Scholar
  34. 34.
    Yamada Y, Kuroe A, Li Q, Someya Y, Kubota A, Ihara Y et al (2001) Genomic variation in pancreatic ion channel genes in Japanese type 2 diabetic patients. Diabetes Metab Res Rev 17(3):213–216. doi:10.1002/dmrr.193 PubMedCrossRefGoogle Scholar
  35. 35.
    Horikoshi M, Hara K, Ito C, Shojima N, Nagai R, Ueki K et al (2007) Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50(12):2461–2466. doi:10.1007/s00125-007-0827-5 PubMedCrossRefGoogle Scholar
  36. 36.
    Yoshinaga H, Kosaka K (1999) Heterogeneous relationship of early insulin response and fasting insulin level with development of non-insulin-dependent diabetes mellitus in non-diabetic Japanese subjects with or without obesity. Diabetes Res Clin Pract 44(2):129–136. doi:10.1016/S0168-8227(99)00019-4 PubMedCrossRefGoogle Scholar
  37. 37.
    Antcliff JF, Haider S, Proks P, Sansom MS, Ashcroft FM (2005) Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J 24(2):229–239. doi:10.1038/sj.emboj.7600487 PubMedCrossRefGoogle Scholar
  38. 38.
    Cukras CA, Jeliazkova I, Nichols CG (2002) The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels. J Gen Physiol 120(3):437–446. doi:10.1085/jgp.20028621 PubMedCrossRefGoogle Scholar
  39. 39.
    Schwanstecher C, Meyer U, Schwanstecher M (2002) K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes 51(3):875–879. doi:10.2337/diabetes.51.3.875 PubMedCrossRefGoogle Scholar
  40. 40.
    Schwanstecher C, Neugebauer B, Schulz M, Schwanstecher M (2002) The common single nucleotide polymorphism E23K in K(IR)6.2 sensitizes pancreatic beta-cell ATP-sensitive potassium channels toward activation through nucleoside diphosphates. Diabetes 51(Suppl 3):S363–S367. doi:10.2337/diabetes.51.2007.S363 PubMedCrossRefGoogle Scholar
  41. 41.
    Riedel MJ, Boora P, Steckley D, de Vries G, Light PE (2003) Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes 52(10):2630–2635. doi:10.2337/diabetes.52.10.2630 PubMedCrossRefGoogle Scholar
  42. 42.
    Li L, Shi Y, Wang X, Shi W, Jiang C (2005) Single nucleotide polymorphisms in K(ATP) channels: muscular impact on type 2 diabetes. Diabetes 54(5):1592–1597. doi:10.2337/diabetes.54.5.1592 PubMedCrossRefGoogle Scholar
  43. 43.
    Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T, Glümer C et al (2003) The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52(2):573–577. doi:10.2337/diabetes.52.2.573 PubMedCrossRefGoogle Scholar
  44. 44.
    Florez JC, Jablonski KA, Kahn SE, Franks PW, Dabelea D, Hamman RF et al (2007) Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes 56(2):531–536. doi:10.2337/db06-0966 PubMedCrossRefGoogle Scholar
  45. 45.
    Inoue H, Ferrer J, Warren-Perry M, Zhang Y, Millns H, Turner RC et al (1997) Sequence variants in the pancreatic islet beta-cell inwardly rectifying K+ channel Kir6.2(Bir) gene: identification and lack of role in Caucasian patients with NIDDM. Diabetes 46(3):502–507. doi:10.2337/diabetes.46.3.502 PubMedCrossRefGoogle Scholar
  46. 46.
    Sakura H, Wat N, Horton V, Millns H, Turner RC, Ashcroft FM (1996) Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in white Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 39(10):1233–1236. doi:10.1007/BF02658512 Google Scholar
  47. 47.
    Hansen L, Echwald SM, Hansen T, Urhammer SA, Clausen JO, Pedersen O (1997) Amino acid polymorphisms in the ATP-regulatable inward rectifier Kir6.2 and their relationships to glucose- and tolbutamide-induced insulin secretion, the insulin sensitivity index, and NIDDM. Diabetes 46(3):508–512. doi:10.2337/diabetes.46.3.508 PubMedCrossRefGoogle Scholar
  48. 48.
    Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J et al (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26(1):76–80. doi:10.1038/79216 PubMedCrossRefGoogle Scholar
  49. 49.
    Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, Froguel P (1998) Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia 41(12):1511–1515. doi:10.1007/s001250051098 Google Scholar
  50. 50.
    Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, Turner RC et al (2001) Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with type 2 diabetes mellitus (UKPDS 53). Diabet Med 18(3):206–212. doi:10.1046/j.1464-5491.2001.00449.x PubMedCrossRefGoogle Scholar
  51. 51.
    Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G et al (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir62 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52(2):568–572. doi:10.2337/diabetes.52.2.568 PubMedCrossRefGoogle Scholar
  52. 52.
    Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW et al (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1(1):E20. doi:10.1371/journal.pbio.0000020 PubMedCrossRefGoogle Scholar
  53. 53.
    Love-Gregory L, Wasson J, Lin J, Skolnick G, Suarez B, Permutt MA (2003) E23K single nucleotide polymorphism in the islet ATP-sensitive potassium channel gene (Kir6.2) contributes as much to the risk of type II diabetes in Caucasians as the PPARgamma Pro12Ala variant. Diabetologia 46(1):136–137. doi:10.1007/s00125-002-0947-x PubMedGoogle Scholar
  54. 54.
    Florez JC, Burtt N, de Bakker PI, Almgren P, Tuomi T, Holmkvist J et al (2004) Haplotype structure and genotype–phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53(5):1360–1368. doi:10.2337/diabetes.53.5.1360 PubMedCrossRefGoogle Scholar
  55. 55.
    Liu Z, Zhang Y, Feng Q, Li Y, Wu G, Zuo J et al (2006) Association analysis of 30 type 2 diabetes candidate genes in Chinese Han population. Acta Acad Med Sin 28(2):124–128 (in Chinese)CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Wang Z, Zhang S, R Wei, Li R, Gong L et al (2008) Correlation between KCNJ11 gene polymorphism and type 2 diabetes mellitus. Med J Chin PLA 33(9):1081–1084 (in Chinese)Google Scholar
  57. 57.
    Baum ML, Anish DS, Chalmers TC, Sacks HS, Smith H Jr, Fagerstrom RM (1981) A survey of clinical trials of antibiotic prophylaxis in colon surgery: evidence against further use of no-treatment controls. N Engl J Med 305(14):795–799. doi:10.1056/NEJM198110013051404 PubMedCrossRefGoogle Scholar
  58. 58.
    Lau J, Schmid CH, Chalmers TC (1995) Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care. J Clin Epidemiol 48(1):45–57; discussion 59–60. doi:10.1016/0895-4356(94)00106-Z PubMedCrossRefGoogle Scholar
  59. 59.
    Zintzaras E, Papathanasiou AA, Stefanidis I (2009) Endothelial nitric oxide synthase gene polymorphisms and diabetic nephropathy: a HuGE review and meta-analysis. Genet Med 11(10):695–706. doi:10.1097/GIM.0b013e3181b2046b PubMedCrossRefGoogle Scholar
  60. 60.
    Li Y, Tang K, Zhang Z, Zhang M, Zeng Z, He Z et al (2010) Genetic diversity of the apolipoprotein E gene and diabetic nephropathy: a meta-analysis. Mol Biol Rep. doi:10.1007/s11033-010-9999-z
  61. 61.
    Zhou JB, Yang JK, Lu JK, An YH (2010) Angiotensin-converting enzyme gene polymorphism is associated with type 2 diabetes: a meta-analysis. Mol Biol Rep 37(1):67–73. doi:10.1007/s11033-009-9648-6 PubMedCrossRefGoogle Scholar
  62. 62.
    Hansen SK, Nielsen EM, Ek J, Andersen G, Glümer C, Carstensen B et al (2005) Analysis of separate and combined effects of common variation in KCNJ11 and PPARG on risk of type 2 diabetes. J Clin Endocrinol Metab 90(6):3629–3637. doi:10.1210/jc.2004-1942 PubMedCrossRefGoogle Scholar
  63. 63.
    Omori S, Tanaka Y, Takahashi A, Hirose H, Kashiwagi A, Kaku K et al (2008) Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57(3):791–795. doi:10.2337/db07-0979 PubMedCrossRefGoogle Scholar
  64. 64.
    Peng S, Su Y, Han D, Zhang X (2008) Association analyses of KCNJ11 gene polymorphisms with type 2 diabetes mellitus. J Yueyang Vocat Tech Coll 23(4):77–80 (in Chinese)Google Scholar
  65. 65.
    Wang F, Han XY, Ren Q, Zhang XY, Han LC, Luo YY et al (2009) Effect of genetic variants in KCNJ11, ABCC8, PPARG and HNF4A loci on the susceptibility of type 2 diabetes in Chinese Han population. Chin Med J 122(20):2477–2482. doi:10.3760/cma.j.issn.0366-6999.2009.20.015 PubMedGoogle Scholar
  66. 66.
    Hu C, Zhang R, Wang C, Wang J, Ma X, Lu J et al (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 4(10):e7643. doi:10.1371/journal.pone.0007643 PubMedCrossRefGoogle Scholar
  67. 67.
    Wen J, Rönn T, Olsson A, Yang Z, Lu B, Du Y et al (2010) Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One 5(2):e9153. doi:10.1371/journal.pone.0009153 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lijuan Yang
    • 1
  • Xianghai Zhou
    • 1
  • Yingying Luo
    • 1
  • Xiuqin Sun
    • 1
  • Yong Tang
    • 1
  • Wulan Guo
    • 1
  • Xueyao Han
    • 1
  • Linong Ji
    • 1
  1. 1.Department of Endocrinology and MetabolismPeking University People’s HospitalBeijingChina

Personalised recommendations