Molecular Biology Reports

, Volume 39, Issue 1, pp 569–576 | Cite as

Selection of housekeeping genes for normalization of RT-PCR in hypoxic neural stem cells of rat in vitro

  • Lu Yao
  • Xinlin Chen
  • Yingfang Tian
  • Haixia Lu
  • Pengbo Zhang
  • Qindong Shi
  • Junfeng Zhang
  • Yong LiuEmail author


Gene expression analysis under various conditions using real-time reverse transcription polymerase chain reaction (RT-PCR) needs reliable control genes. Housekeeping genes are commonly used as the control. However, no validated housekeeping gene is available for study of hypoxic neural stem cell culture. To choose appropriate internal control genes, the expression of eight commonly used housekeeping genes was examined in rat neural stem cell model to find one or more stably expressed genes under hypoxic/ischemic conditions. Two genes, HPRT and RPL13A were identified as the most confidential housekeeping genes in this research by geNorm and NormFinder softwares. As a groundwork, the most stable housekeeping genes for neural stem cells under hypoxic/ischemic conditions are initially investigated and validated in this experiment, which might provide a better understanding for the gene expression study in ischemic and necrotic neural stem cell cultures or in ischemic diseases of the central nervous system (CNS).


Housekeeping gene Neural stem cells Hypoxic condition RT-PCR 



This work was supported by grants from National Natural Science Foundation of China (30770673 and 81070998) and Youth Fund of Xi’an Jiaotong University College of Medicine (YQN0802).


  1. 1.
    Ahn K, Huh JW, Park SJ, Kim DS, Ha HS, Kim YJ, Lee JR, Chang KT, Kim HS (2008) Selection of internal reference genes for SYBR green RT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol Biol 9:78PubMedCrossRefGoogle Scholar
  2. 2.
    Almeida A, Paul Thiery J, Magdelénat H, Radvanyi F (2004) Gene expression analysis by real-time reverse transcription polymerase chain reaction: influence of tissue handling. Anal Biochem 328:101–108PubMedCrossRefGoogle Scholar
  3. 3.
    Andersen CL, Jensen JLand Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250PubMedCrossRefGoogle Scholar
  4. 4.
    Arien-Zakay H, Lecht S, Bercu MM, Tabakman R, Kohen R, Galski H, Nagler A, Lazarovici P (2009) Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Exp Neurol 216:83–94PubMedCrossRefGoogle Scholar
  5. 5.
    Bémeur C, Ste-Marie L, Desjardins P, Hazell AS, Vachon L, Butterworth R, Montgomery J (2004) Decreased beta-actin mRNA expression in hyperglycemic focal cerebral ischemia in the rat. Neurosci Lett 357:211–214PubMedCrossRefGoogle Scholar
  6. 6.
    Boulos S, Meloni BP, Arthur PG, Majda B, Bojarski C, Knuckey NW (2007) Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol Dis 25:54–64PubMedCrossRefGoogle Scholar
  7. 7.
    Chen X, Tian Y, Yao L, Zhang J, Liu Y (2010) Hypoxia stimulates proliferation of rat neural cells with influence on the expression of cyclin D1 and c-Jun N-terminal protein kinase signaling pathway in vitro. Neuroscience 165:705–714PubMedCrossRefGoogle Scholar
  8. 8.
    Cherin T, Catbagan M, Treiman S, Mink R (2006) The effect of normothermic and hypothermic hypoxia–ischemia on brain hypoxanthine phosphoribosyl transferase activity. Neurol Res 28:831–836PubMedCrossRefGoogle Scholar
  9. 9.
    Chu K, Jung KH, Kim SJ, Lee ST, Kim J, Park HK, Song EC, Kim SU, Kim M, Lee SK, Roh JK (2008) Transplantation of human neural stem cells protect against ischemia in a preventive mode via hypoxia-inducible factor-1 alpha stabilization in the host brain. Brain Res 1207:182–192PubMedCrossRefGoogle Scholar
  10. 10.
    Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time RT-PCR performance. Mol Aspects Med 27:126–139PubMedCrossRefGoogle Scholar
  11. 11.
    Foldager CB, Munir S, Ulrik-Vinther M, Søballe K, Bünger C, Lind M (2009) Validation of suitable house keeping genes for hypoxia-cultured human chondrocytes. BMC Mol Biol 10:94PubMedCrossRefGoogle Scholar
  12. 12.
    Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of RT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493PubMedCrossRefGoogle Scholar
  13. 13.
    Jung CG, Hida H, Nakahira K, Ikenaka K, Kim HJ, Nishino H (2004) Pleiotrophin mRNA is highly expressed in neural stem (progenitor) cells of mouse ventral mesencephalon and the product promotes production of dopaminergic neurons from embryonic stem cell-derived nestin-positive cells. FASEB J 18:1237–1239PubMedGoogle Scholar
  14. 14.
    Kim TS, Misumi S, Jung CG, Masuda T, Isobe Y, Furuyama F, Nishino H, Hida H (2008) Increase in dopaminergic neurons from mouse embryonic stem cell-derived neural progenitor/stem cells is mediated by hypoxia inducible factor-1 alpha. J Neurosci Res 86:2353–2362PubMedCrossRefGoogle Scholar
  15. 15.
    Lanier WL (1999) The prevention and treatment of cerebral ischemia. Can J Anaesth 46:46–56CrossRefGoogle Scholar
  16. 16.
    Molloy GR, Wilson CD, Benfield P, de Vellis J, Kumar S (1992) Rat brain creatine kinase messenger RNA levels are high in primary cultures of brain astrocytes and oligodendrocytes and low in neurons. J Neurochem 59:1925–1932PubMedCrossRefGoogle Scholar
  17. 17.
    Peters IR, Peeters D, Helps CR, Day MJ (2007) Development and application of multiple internal reference (housekeeper) gene assays for accurate normalisation of canine gene expression studies. Vet Immunol Immunopathol 117:55–66PubMedCrossRefGoogle Scholar
  18. 18.
    Provenzano M, Mocellin S (2007) Complementary techniques: validation of gene expression data by quantitative real time PCR. Adv Exp Med Biol 593:66–73PubMedCrossRefGoogle Scholar
  19. 19.
    Sarnowska A, Braun H, Sauerzweig S, Reymann KG (2009) The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue. Exp Neurol 215:317–327PubMedCrossRefGoogle Scholar
  20. 20.
    Schroder AL, Pelch KE, Nagel SC (2009) Estrogen modulates expression of putative housekeeping genes in the mouse uterus. Endocrine 35:211–219PubMedCrossRefGoogle Scholar
  21. 21.
    Sirakov M, Zarrella I, Borra M, Rizzo F, Biffali E, Arnone MI, Fiorito G (2009) Selection and validation of a set of reliable reference genes for quantitative RT-PCR studies in the brain of the Cephalopod Mollusc Octopus vulgaris. BMC Mol Biol 10:70PubMedCrossRefGoogle Scholar
  22. 22.
    Stenman E, Malmsjö M, Uddman E, Gidö G, Wieloch T, Edvinsson L (2002) Cerebral ischemia upregulates vascular endothelin ET(B) receptors in rat. Stroke 33:2311–2316PubMedCrossRefGoogle Scholar
  23. 23.
    Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, Yu SP (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210:656–670PubMedCrossRefGoogle Scholar
  24. 24.
    Tian YF, Zhang PB, Xiao XL, Zhang JS, Zhao JJ, Kang QY, Chen XL, Qiu F, Liu Y (2007) The quantification of ADAMTS expression in an animal model of cerebral ischemia using real-time PCR. Acta Anaesthesiol Scand 51:158–164PubMedCrossRefGoogle Scholar
  25. 25.
    Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71PubMedCrossRefGoogle Scholar
  26. 26.
    Trollmann R, Schoof E, Beinder E, Wenzel D, Rascher W, Dotsch J (2002) Adrenomedullin gene expression in human placental tissue and leukocytes: a potential marker of severe tissue hypoxia in neonates with birth asphyxia. Eur J Endocrinol 147:711–716PubMedCrossRefGoogle Scholar
  27. 27.
    Urdal P, Urdal K, Strømme JH (1983) Cytoplasmic creatine kinase isoenzymes quantitated in tissue specimens obtained at surgery. Clin Chem 29:310–313PubMedGoogle Scholar
  28. 28.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034Google Scholar
  29. 29.
    Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, Ponka P, Semenza GL, Schumacher A, Prchal JT (2006) Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem 281:25703–25711PubMedCrossRefGoogle Scholar
  30. 30.
    Zhu C, Wang X, Deinum J, Huang Z, Gao J, Modjtahedi N, Neagu MR, Nilsson M, Eriksson PS, Hagberg H, Luban J, Kroemer G, Blomgren K (2007) Cyclophilin A participates in the nuclear translocation of apoptosis inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med 204:1741–1748PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lu Yao
    • 1
  • Xinlin Chen
    • 1
  • Yingfang Tian
    • 1
  • Haixia Lu
    • 1
  • Pengbo Zhang
    • 2
  • Qindong Shi
    • 3
  • Junfeng Zhang
    • 1
  • Yong Liu
    • 1
    Email author
  1. 1.Institute of Neurobiology, Environment and Genes Related to Diseases, Key Laboratory of Education MinistryXi’an Jiaotong University College of MedicineXi’anPeople’s Republic of China
  2. 2.Second Affiliated hospitalXi’an Jiaotong University College of MedicineXi’anPeople’s Republic of China
  3. 3.First Affiliated hospitalXi’an Jiaotong University College of MedicineXi’anPeople’s Republic of China

Personalised recommendations