Advertisement

Molecular Biology Reports

, Volume 39, Issue 1, pp 467–473 | Cite as

Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways

  • Hongliang Jiao
  • Fangxia Guan
  • Bo YangEmail author
  • Jianbin Li
  • Laijun Song
  • Xiang Hu
  • Ying Du
Article

Abstract

High-grade gliomas are difficult to treat. We examined the therapeutic effect of intratumoral administration of human amniotic membrane derived-mesenchymal stem cells (hAMCs) on the growth of gliomas. Tumor volume of the control group was 1632 ± 316 mm3 on day 30, and the group treated with a single intratumoral dose of hAMCs had a tumor volume of 1128 ± 269 mm3 (P < 0.05). Thus, administration of hAMCs significantly reduced tumor size. In rat glioma tissues treated with single and multiple dosages of hAMCs, there was a reduction in tumor volume of approximately 30.9 and 49.5%, respectively. We further evaluated the glioma tissue using Western blotting analysis and observed that the expression of Bax, caspase-8 and caspase-3 were greatly increased and the expression of Bcl-2 was greatly decreased in tumors treated with hAMCs. Sections of nude mice treated with hAMCs clearly showed the presence of an increase in apoptotic cells. The data collected herein confirms for the first time that hAMCs can inhibit C6 glioma growth and induce apoptosis of C6 gliomas in vivo. This demonstrates that hAMCs are a potential new therapeutic agent for the treatment of gliomas.

Keywords

Mesenchymal stem cells Amniotic membrane Glioma 

Notes

Acknowledgments

This study was supported by the Program for New Century Excellent Talents in University (No. NECT-06-0611), Three Key Disciplines Construction Project of Zhengzhou University 211 Project, and the Henan Province Medical Technological Innovation Project (No. 2005018).

Conflict of interest

None.

References

  1. 1.
    Donato V, Papaleo A, Castrichino A, Banelli E, Giangaspero F, Salvati M, Delfini R (2007) Prognostic implication of clinical and pathologic features in patients with glioblastoma multiforme treated with concomitant radiation plus temozolomide. Tumori 93(3):248–256PubMedGoogle Scholar
  2. 2.
    Kang SG, Kim JH, Nam DH, Park K (2005) Clinical and radiological prognostic factors of anaplastic oligodendroglioma treated by combined therapy. Neurol Med Chir (Tokyo) 45(5):232–238 discussion 238-9CrossRefGoogle Scholar
  3. 3.
    Desjardins A, Quinn JA, Vredenburgh JJ, Sathornsumetee S, Friedman AH, Herndon JE, McLendon RE, Provenzale JM, Rich JN, Sampson JH, Gururangan S, Dowell JM, Salvado A, Friedman HS, Reardon DA (2007) Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J Neurooncol 83(1):53–60PubMedCrossRefGoogle Scholar
  4. 4.
    Scheda A, Finjap JK, Tuettenberg J, Brockmann MA, Hochhaus A, Hofheinz R, Lohr F, Wenz F (2007) Efficacy of different regimens of adjuvant radiochemotherapy for treatment of glioblastoma. Tumori 93(1):31–36PubMedGoogle Scholar
  5. 5.
    Mannello F, Tonti GA, Bagnara GP, Papa S (2006) Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. Stem Cells 24(3):475–481PubMedCrossRefGoogle Scholar
  6. 6.
    Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856PubMedCrossRefGoogle Scholar
  7. 7.
    Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79(5):528–535PubMedCrossRefGoogle Scholar
  8. 8.
    Ochsenbein-Kölble N, Bilic G, Hall H, Huch R, Zimmermann R (2003) Inducing proliferation of human amnion epithelial and mesenchymal cells for prospective engineering of membrane repair. J Perinat Med 31(4):287–294PubMedCrossRefGoogle Scholar
  9. 9.
    Kang SG, Jeun SS, Lim JY, Kim SM, Yang YS, Oh WI, Huh PW, Park CK (2008) Cytotoxicity of human umbilical cord blood-derived mesenchymal stem cells against human malignant glioma cells. Childs Nerv Syst 24(3):293–302PubMedCrossRefGoogle Scholar
  10. 10.
    Kim DS, Kim JH, Lee JK, Choi SJ, Kim JS, Jeun SS, Oh W, Yang YS, Chang JW (2009) Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev 18(3):511–519PubMedCrossRefGoogle Scholar
  11. 11.
    Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M, Oh W, Park SH, Sung YC, Jeun SS (2008) Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 68(23):9614–9623PubMedCrossRefGoogle Scholar
  12. 12.
    Dasari VR, Velpula KK, Kaur K, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS (2010) Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP). PLoS One 5(7):e11813PubMedCrossRefGoogle Scholar
  13. 13.
    Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157(5):1415–1430PubMedCrossRefGoogle Scholar
  14. 14.
    Euhus DM, Hudd C, LaRegina MC, Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31(4):229–234PubMedCrossRefGoogle Scholar
  15. 15.
    Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24(3):148–154PubMedCrossRefGoogle Scholar
  16. 16.
    Secchiero P, Zorzet S, Tripodo C, Corallini F, Melloni E, Caruso L, Bosco R, Ingrao S, Zavan B, Zauli G (2010) Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS One 5(6):e11140PubMedCrossRefGoogle Scholar
  17. 17.
    Wei Z, Chen N, Guo H, Wang X, Xu F, Ren Q, Lu S, Liu B, Zhang L, Zhao H (2009) Bone marrow mesenchymal stem cells from leukemia patients inhibit growth and apoptosis in serum-deprived K562 cells. J Exp Clin Cancer Res 28:141PubMedCrossRefGoogle Scholar
  18. 18.
    Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, Zhang J, Raffeld M, Rogers TB, Stetler-Stevenson W, Frank JA, Reitz M, Finkel T (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203(5):1235–1247PubMedCrossRefGoogle Scholar
  19. 19.
    Han X, Meng X, Yin Z, Rogers A, Zhong J, Rillema P, Jackson JA, Ichim TE, Minev B, Carrier E, Patel AN, Murphy MP, Min WP, Riordan NH (2009) Inhibition of intracranial glioma growth by endometrial regenerative cells. Cell Cycle 8(4):606–610PubMedCrossRefGoogle Scholar
  20. 20.
    Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(Pt 4):437–441PubMedCrossRefGoogle Scholar
  21. 21.
    Zander T, Kraus JA, Grommes C, Schlegel U, Feinstein D, Klockgether T, Landreth G, Koenigsknecht J, Heneka MT (2002) Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem 81(5):1052–1060PubMedCrossRefGoogle Scholar
  22. 22.
    Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27(50):6398–6406PubMedCrossRefGoogle Scholar
  23. 23.
    Hassouna I, Wickert H, Zimmermann M, Gillardon F (1996) Increase in Bax expression in substantia nigra following 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) treatment of mice. Neurosci Lett 204(1–2):85–88PubMedCrossRefGoogle Scholar
  24. 24.
    Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385(6617):637–640PubMedCrossRefGoogle Scholar
  25. 25.
    Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345(Pt 2):271–278PubMedCrossRefGoogle Scholar
  26. 26.
    Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10(9):369–377PubMedCrossRefGoogle Scholar
  27. 27.
    Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26(1):61–66PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hongliang Jiao
    • 1
    • 3
  • Fangxia Guan
    • 2
  • Bo Yang
    • 1
    Email author
  • Jianbin Li
    • 3
  • Laijun Song
    • 1
  • Xiang Hu
    • 4
  • Ying Du
    • 5
  1. 1.Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityHenan ProvinceChina
  2. 2.Department of BioengineeringZhengzhou UniversityHenan ProvinceChina
  3. 3.Henan Province Red Cross Blood CenterHenan ProvinceChina
  4. 4.Shenzhen Beike Cells Engineering Research InstituteGuangdong ProvinceChina
  5. 5.Department of Microbiology and ImmunologyBasic Medical College of Zhengzhou UniversityHenan ProvinceChina

Personalised recommendations